
Benoit Malleret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2231040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrastructural characterization of host–parasite interactions of Plasmodium coatneyi in rhesus macaques. Parasitology, 2022, 149, 1-35.	0.7	1
2	Experimental colonization with Blastocystis ST4 is associated with protective immune responses and modulation of gut microbiome in a DSS-induced colitis mouse model. Cellular and Molecular Life Sciences, 2022, 79, 245.	2.4	25
3	A Scalable Suspension Platform for Generating High-Density Cultures of Universal Red Blood Cells from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2021, 16, 182-197.	2.3	27
4	Microbial exposure during early human development primes fetal immune cells. Cell, 2021, 184, 3394-3409.e20.	13.5	141
5	Recent Molecular Assessment of Plasmodium vivax and Plasmodium falciparum Asymptomatic Infections in Botswana. American Journal of Tropical Medicine and Hygiene, 2021, 104, 2159-2164.	0.6	5
6	Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. Journal of Experimental Medicine, 2021, 218, .	4.2	68
7	Zoonotic Malaria: Non-Laverania Plasmodium Biology and Invasion Mechanisms. Pathogens, 2021, 10, 889.	1.2	8
8	Rodent Malaria Erythrocyte Preference Assessment by an Ex Vivo Tropism Assay. Frontiers in Cellular and Infection Microbiology, 2021, 11, 680136.	1.8	5
9	Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nature Microbiology, 2021, 6, 991-999.	5.9	26
10	Children with Plasmodium vivax infection previously observed in Namibia, were Duffy negative and carried a c.136G > A mutation. BMC Infectious Diseases, 2021, 21, 856.	1.3	4
11	A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity, 2021, 54, 2101-2116.e6.	6.6	99
12	Industrially Compatible Transfusable iPSC-Derived RBCs: Progress, Challenges and Prospective Solutions. International Journal of Molecular Sciences, 2021, 22, 9808.	1.8	9
13	Reply to Over-celling fetal microbial exposure. Cell, 2021, 184, 5842-5844.	13.5	1
14	Plasmodium kinase disruption: new hopes for antiâ€malarial drug discovery. British Journal of Haematology, 2020, 188, 603-604.	1.2	1
15	Keras R-CNN: library for cell detection in biological images using deep neural networks. BMC Bioinformatics, 2020, 21, 300.	1.2	44
16	Fetal mast cells mediate postnatal allergic responses dependent on maternal IgE. Science, 2020, 370, 941-950.	6.0	67
17	Immunological history governs human stem cell memory CD4 heterogeneity via the Wnt signaling pathway. Nature Communications, 2020, 11, 821.	5.8	25
18	Plasmodium-infected erythrocytes induce secretion of IGFBP7 to form type II rosettes and escape phagocytosis. ELife, 2020, 9, .	2.8	16

#	Article	IF	CITATIONS
19	Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nature Communications, 2019, 10, 3635.	5.8	39
20	Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity, 2019, 51, 573-589.e8.	6.6	336
21	Molecular detection of P. vivax and P. ovale foci of infection in asymptomatic and symptomatic children in Northern Namibia. PLoS Neglected Tropical Diseases, 2019, 13, e0007290.	1.3	12
22	Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science, 2019, 363, .	6.0	676
23	A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGF1±-Mediated Recruitment of Neutrophils. Immunity, 2019, 50, 1069-1083.e8.	6.6	50
24	The impact of targeted malaria elimination with mass drug administrations on falciparum malaria in Southeast Asia: A cluster randomised trial. PLoS Medicine, 2019, 16, e1002745.	3.9	105
25	Transferrin receptor 1 is a reticulocyte-specific receptor for <i>Plasmodium vivax</i> . Science, 2018, 359, 48-55.	6.0	158
26	Quantitative mass spectrometry of human reticulocytes reveal proteomeâ€wide modifications during maturation. British Journal of Haematology, 2018, 180, 118-133.	1.2	40
27	Multimodal assessments of Zika virus immune pathophysiological responses in marmosets. Scientific Reports, 2018, 8, 17125.	1.6	4
28	Monocyte Subsets Have Distinct Patterns of Tetraspanin Expression and Different Capacities to Form Multinucleate Giant Cells. Frontiers in Immunology, 2018, 9, 1247.	2.2	23
29	The unhealthy attraction of Plasmodium vivax to reticulocytes expressing transferrin receptor 1 (CD71). International Journal for Parasitology, 2017, 47, 379-383.	1.3	15
30	Mapping the human DC lineage through the integration of high-dimensional techniques. Science, 2017, 356, .	6.0	429
31	Asian G6PD-Mahidol Reticulocytes Sustain Normal Plasmodium Vivax Development. Journal of Infectious Diseases, 2017, 216, 263-266.	1.9	8
32	The G6PD flow-cytometric assay is a reliable tool for diagnosis of G6PD deficiency in women and anaemic subjects. Scientific Reports, 2017, 7, 9822.	1.6	28
33	Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function. Immunity, 2017, 47, 183-198.e6.	6.6	245
34	Strict tropism for CD71+/CD234+ human reticulocytes limits the zoonotic potential of Plasmodium cynomolgi. Blood, 2017, 130, 1357-1363.	0.6	27
35	Singapore's Anopheles sinensis Form A is susceptible to Plasmodium vivax isolates from the western Thailand–Myanmar border. Malaria Journal, 2017, 16, 465.	0.8	8
36	Safety and effectiveness of mass drug administration to accelerate elimination of artemisinin-resistant falciparum malaria: A pilot trial in four villages of Eastern Myanmar. Wellcome Open Research, 2017, 2, 81.	0.9	71

#	Article	IF	CITATIONS
37	Four human Plasmodium species quantification using droplet digital PCR. PLoS ONE, 2017, 12, e0175771.	1.1	49
38	Applying Faster R-CNN for Object Detection on Malaria Images. , 2017, 2017, 808-813.		96
39	<i>Ex Vivo</i> Maturation Assay for Testing Antimalarial Sensitivity of Rodent Malaria Parasites. Antimicrobial Agents and Chemotherapy, 2016, 60, 6859-6866.	1.4	5
40	UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nature Microbiology, 2016, 1, 16166.	5.9	102
41	Breadth of humoral response and antigenic targets of sporozoite-inhibitory antibodies associated with sterile protection induced by controlled human malaria infection. Cellular Microbiology, 2016, 18, 1739-1750.	1.1	33
42	A Basis for Rapid Clearance of Circulating Ring-Stage Malaria Parasites by the Spiroindolone KAE609. Journal of Infectious Diseases, 2016, 213, 100-104.	1.9	35
43	Reply to "Flow Cytometry for Antimalarial Drug Testing: More than Meets the Eye― Journal of Clinical Microbiology, 2016, 54, 818-819.	1.8	Ο
44	Unambiguous determination of Plasmodium vivax reticulocyte invasion by flow cytometry. International Journal for Parasitology, 2016, 46, 31-39.	1.3	22
45	Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2. Journal of Investigative Dermatology, 2016, 136, 416-424.	0.3	62
46	Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood, 2015, 125, 1314-1324.	0.6	157
47	The epidemiology of subclinical malariaÂinfections in South-East Asia: findings from cross-sectional surveys in Thailand–Myanmar border areas, Cambodia, and Vietnam. Malaria Journal, 2015, 14, 381.	0.8	163
48	Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nature Immunology, 2015, 16, 718-728.	7.0	475
49	Long-Term Control of Simian Immunodeficiency Virus (SIV) in Cynomolgus Macaques Not Associated with Efficient SIV-Specific CD8 ⁺ T-Cell Responses. Journal of Virology, 2015, 89, 3542-3556.	1.5	21
50	Methylene blue inhibits the asexual development of vivax malaria parasites from a region of increasing chloroquine resistance. Journal of Antimicrobial Chemotherapy, 2015, 70, 124-129.	1.3	23
51	Immunization with the MAEBL M2 Domain Protects against Lethal Plasmodium yoelii Infection. Infection and Immunity, 2015, 83, 3781-3792.	1.0	16
52	Comparison between Flow Cytometry, Microscopy, and Lactate Dehydrogenase-Based Enzyme-Linked Immunosorbent Assay for Plasmodium falciparum Drug Susceptibility Testing under Field Conditions. Journal of Clinical Microbiology, 2015, 53, 3296-3303.	1.8	10
53	High-Throughput Ultrasensitive Molecular Techniques for Quantifying Low-Density Malaria Parasitemias. Journal of Clinical Microbiology, 2014, 52, 3303-3309.	1.8	181
54	An Integrated Lab-on-Chip for Rapid Identification and Simultaneous Differentiation of Tropical Pathogens. PLoS Neglected Tropical Diseases, 2014, 8, e3043.	1.3	33

#	Article	IF	CITATIONS
55	<scp>CD</scp> 41 is a reliable identification and activation marker for murine basophils in the steady state and during helminth and malarial infections. European Journal of Immunology, 2014, 44, 1823-1834.	1.6	16
56	Rodent Plasmodium-infected red blood cells: Imaging their fates and interactions within their hosts. Parasitology International, 2014, 63, 187-194.	0.6	8
57	STEVOR Is a Plasmodium falciparum Erythrocyte Binding Protein that Mediates Merozoite Invasion and Rosetting. Cell Host and Microbe, 2014, 16, 81-93.	5.1	148
58	Glycophorin C (CD236R) mediates vivax malaria parasite rosetting to normocytes. Blood, 2014, 123, e100-e109.	0.6	44
59	IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses. Immunity, 2013, 38, 970-983.	6.6	703
60	Field-Based Flow Cytometry for <i>Ex Vivo</i> Characterization of Plasmodium vivax and P. falciparum Antimalarial Sensitivity. Antimicrobial Agents and Chemotherapy, 2013, 57, 5170-5174.	1.4	18
61	Brain microvessel crossâ€presentation is a hallmark of experimental cerebral malaria. EMBO Molecular Medicine, 2013, 5, 984-999.	3.3	131
62	Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. Journal of Experimental Medicine, 2013, 210, 2321-2336.	4.2	190
63	Significant Biochemical, Biophysical and Metabolic Diversity in Circulating Human Cord Blood Reticulocytes. PLoS ONE, 2013, 8, e76062.	1.1	114
64	Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. Journal of Experimental Medicine, 2012, 209, 1167-1181.	4.2	639
65	Human ex vivo studies on asexual Plasmodium vivax: The best way forward. International Journal for Parasitology, 2012, 42, 1063-1070.	1.3	40
66	Human Tissues Contain CD141hi Cross-Presenting Dendritic Cells with Functional Homology to Mouse CD103+ Nonlymphoid Dendritic Cells. Immunity, 2012, 37, 60-73.	6.6	643
67	A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development. Scientific Reports, 2011, 1, 118.	1.6	175
68	Suppressive activity of regulatory T cells correlates with high CD4+ T-cell counts and low T-cell activation during chronic simian immunodeficiency virus infection. Aids, 2011, 25, 585-593.	1.0	6
69	A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood, 2011, 118, e74-e81.	0.6	120
70	Chikungunya Virus Neutralization Antigens and Direct Cell-to-Cell Transmission Are Revealed by Human Antibody-Escape Mutants. PLoS Pathogens, 2011, 7, e1002390.	2.1	88
71	CD8+ T Cells and IFN-γ Mediate the Time-Dependent Accumulation of Infected Red Blood Cells in Deep Organs during Experimental Cerebral Malaria. PLoS ONE, 2011, 6, e18720.	1.1	127
72	Active Infection of Human Blood Monocytes by Chikungunya Virus Triggers an Innate Immune Response. Journal of Immunology, 2010, 184, 5903-5913.	0.4	237

#	Article	IF	CITATIONS
73	Modulation of indoleamineâ€2,3â€dioxygenase expression and activity by HIVâ€1 in human macrophages. Fundamental and Clinical Pharmacology, 2009, 23, 573-581.	1.0	19
74	Effect of SIVmac infection on plasmacytoid and CD1c ⁺ myeloid dendritic cells in cynomolgus macaques. Immunology, 2008, 124, 223-233.	2.0	41
75	Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type l interferon, and immune suppression. Blood, 2008, 112, 4598-4608.	0.6	160
76	FoxP3 ⁺ CD25 ⁺ CD8 ⁺ T-Cell Induction during Primary Simian Immunodeficiency Virus Infection in Cynomolgus Macaques Correlates with Low CD4 ⁺ T-Cell Activation and High Viral Load. Journal of Virology, 2007, 81, 13444-13455.	1.5	51
77	Dynamics of T-Cell Responses and Memory T Cells during Primary Simian Immunodeficiency Virus Infection in Cynomolgus Macaques. Journal of Virology, 2007, 81, 13456-13468.	1.5	62
78	Comparative effects of two type I interferons, human IFN-? and ovine IFN-? on indoleamine-2,3-dioxygenase in primary cultures of human macrophages. Fundamental and Clinical Pharmacology, 2007, 21, 29-34.	1.0	16