

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2230543/publications.pdf Version: 2024-02-01

RINC NI

#	Article	IF	CITATIONS
1	Zirconium–Porphyrinâ€Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Nobleâ€Metal Single Atoms. Angewandte Chemie - International Edition, 2018, 57, 3493-3498.	7.2	341
2	Dendritic defect-rich palladium–copper–cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nature Communications, 2018, 9, 3702.	5.8	204
3	Ultrathin 2D Zirconium Metal–Organic Framework Nanosheets: Preparation and Application in Photocatalysis. Small, 2018, 14, e1703929.	5.2	171
4	Face the Edges: Catalytic Active Sites of Nanomaterials. Advanced Science, 2015, 2, 1500085.	5.6	145
5	Competitive coordination strategy for the synthesis of hierarchical-pore metal–organic framework nanostructures. Chemical Science, 2016, 7, 7101-7105.	3.7	125
6	Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nature Communications, 2019, 10, 3844.	5.8	121
7	Atomically Thick Pt u Nanosheets: Selfâ€Assembled Sandwich and Nanoringâ€Like Structures. Advanced Materials, 2015, 27, 2013-2018.	11.1	106
8	Incorporation of clusters within inorganic materials through their addition during nucleation steps. Nature Chemistry, 2019, 11, 839-845.	6.6	104
9	Zirconium–Porphyrinâ€Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Nobleâ€Metal Single Atoms. Angewandte Chemie, 2018, 130, 3551-3556.	1.6	102
10	Trimetallic Sulfide Mesoporous Nanospheres as Superior Electrocatalysts for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1801839.	10.2	101
11	The Subâ€Nanometer Scale as a New Focus in Nanoscience. Advanced Materials, 2018, 30, e1802031.	11.1	99
12	Modifying Commercial Carbon with Trace Amounts of ZIF to Prepare Derivatives with Superior ORR Activities. Advanced Materials, 2017, 29, 1701354.	11.1	94
13	Porous Tetrametallic PtCuBiMn Nanosheets with a High Catalytic Activity and Methanol Tolerance Limit for Oxygen Reduction Reactions. Advanced Materials, 2017, 29, 1604994.	11.1	84
14	Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. Nanoscale, 2018, 10, 4670-4674.	2.8	82
15	Highly Active and Durable Pt ₇₂ Ru ₂₈ Porous Nanoalloy Assembled with Subâ€4.0 nm Particles for Methanol Oxidation. Advanced Energy Materials, 2017, 7, 1601593.	10.2	81
16	Cobalt carbonate hydroxide superstructures for oxygen evolution reactions. Chemical Communications, 2017, 53, 8010-8013.	2.2	74
17	Fast and scalable synthesis of uniform zirconium-, hafnium-based metal–organic framework nanocrystals. Nanoscale, 2017, 9, 19209-19215.	2.8	74
18	Heterogeneous Catalysts with Wellâ€Defined Active Metal Sites toward CO ₂ Electrocatalytic Reduction. Advanced Energy Materials, 2020, 10, 2001142.	10.2	66

Bing Ni

#	Article	IF	CITATIONS
19	Metal–Organic Framework Based Microcapsules. Angewandte Chemie - International Edition, 2018, 57, 10148-10152.	7.2	64
20	General synthesis of inorganic single-walled nanotubes. Nature Communications, 2015, 6, 8756.	5.8	61
21	Chemistry and properties at a sub-nanometer scale. Chemical Science, 2016, 7, 3978-3991.	3.7	61
22	Single molecule–mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures. Science Advances, 2019, 5, eaax1081.	4.7	61
23	Surface Oxidation of AuNi Heterodimers to Achieve High Activities toward Hydrogen/Oxygen Evolution and Oxygen Reduction Reactions. Small, 2018, 14, e1703749.	5.2	60
24	The formation of (NiFe)S ₂ pyrite mesocrystals as efficient pre-catalysts for water oxidation. Chemical Science, 2018, 9, 2762-2767.	3.7	60
25	Ultra-small Tetrametallic Pt-Pd-Rh-Ag Nanoframes with Tunable Behavior for Direct Formic Acid/Methanol Oxidation. Small, 2016, 12, 5261-5268.	5.2	52
26	Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation. Chemical Science, 2015, 6, 3572-3576.	3.7	49
27	3D self-assembly of ultrafine molybdenum carbide confined in N-doped carbon nanosheets for efficient hydrogen production. Nanoscale, 2017, 9, 15895-15900.	2.8	45
28	Chirality communications between inorganic and organic compounds. SmartMat, 2021, 2, 17-32.	6.4	45
29	Trimetallic PtCoFe Alloy Monolayer Superlattices as Bifunctional Oxygen-Reduction and Ethanol-Oxidation Electrocatalysts. Small, 2017, 13, 1700250.	5.2	42
30	Fullereneâ€Like Nickel Oxysulfide Hollow Nanospheres as Bifunctional Electrocatalysts for Water Splitting. Small, 2017, 13, 1602637.	5.2	39
31	Van der Waals Integrated Hybrid POMâ€Zirconia Flexible Belt‣ike Superstructures. Advanced Materials, 2020, 32, e1906794.	11.1	37
32	Competitive Coordination Strategy to Finely Tune Pore Environment of Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 22732-22738.	4.0	36
33	Nanosheetâ€Assembled Hierarchical Carbon Nanoframeworks Bearing a Multiactive Center for Oxygen Reduction Reaction. Small Methods, 2018, 2, 1800068.	4.6	28
34	Ultrathin Tungsten Bronze Nanowires with Efficient Photo-to-Thermal Conversion Behavior. Chemistry of Materials, 2018, 30, 8727-8731.	3.2	28
35	A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. Journal of Energy Chemistry, 2022, 64, 263-275.	7.1	28
36	Boosting the ORR performance of modified carbon black <i>via</i> C–O bonds. Chemical Science, 2019, 10, 2118-2123.	3.7	26

Bing Ni

#	Article	IF	CITATIONS
37	Finely Composition-Tunable Synthesis of Ultrafine Wavy PtRu Nanowires as Effective Electrochemical Sensors for Dopamine Detection. Langmuir, 2017, 33, 8070-8075.	1.6	25
38	Titanocene dichloride (Cp ₂ TiCl ₂) as a precursor for template-free fabrication of hollow TiO ₂ nanostructures with enhanced photocatalytic hydrogen production. Nanoscale, 2017, 9, 2074-2081.	2.8	24
39	Mesoporous ZrO ₂ Nanoframes for Biomass Upgrading. ACS Applied Materials & Interfaces, 2017, 9, 26897-26906.	4.0	24
40	Highly Flexible and Stretchable Nanowire Superlattice Fibers Achieved by Springâ€Like Structure of Subâ€1 nm Nanowires. Advanced Functional Materials, 2019, 29, 1903477.	7.8	20
41	Crystallinity-induced shape evolution of Pt–Ag nanosheets from branched nanocrystals. Chemical Communications, 2016, 52, 10547-10550.	2.2	19
42	Mimic the Photosystem II for Water Oxidation in Neutral Solution: A Case of Co ₃ O ₄ . Advanced Energy Materials, 2018, 8, 1702313.	10.2	18
43	Facile synthesis of complex shaped Pt–Cu alloy architectures. Nanoscale, 2016, 8, 13212-13216.	2.8	17
44	Self-Assembly of Colloidal Nanocrystals into 3D Binary Mesocrystals. Accounts of Chemical Research, 2022, 55, 1599-1608.	7.6	17
45	Metal–Organic Framework Based Microcapsules. Angewandte Chemie, 2018, 130, 10305-10309.	1.6	15
46	The Synthesis of Sub-Nano-Thick Pd Nanobelt–Based Materials for Enhanced Hydrogen Evolution Reaction Activity. CCS Chemistry, 2020, 2, 642-654.	4.6	14
47	Nanostructure formation via post growth of particles. CrystEngComm, 2015, 17, 6796-6808.	1.3	12
48	A Symmetryâ€Based Kinematic Theory for Nanocrystal Morphology Design. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
49	The Synthesis of Sub-Nano-Thick Pd Nanobelt–Based Materials for Enhanced Hydrogen Evolution Reaction Activity. CCS Chemistry, 2020, 2, 642-654.	4.6	7
50	Simple Determination of Gold Nanocrystal Dimensions by Analytical Ultracentrifugation via Surface Ligand-Solvent Density Matching. Nanomaterials, 2021, 11, 1427.	1.9	4
51	Three-dimensional macroscale assembly of Pd nanoclusters. Nano Research, 2018, 11, 3175-3181.	5.8	3
52	Rational Design of Environmentally Compatible Nickel Hexacyanoferrate Mesocrystals as Catalysts. Journal of Physical Chemistry C, 0, , .	1.5	2
53	Outside Back Cover: Volume 2 Issue 1. SmartMat, 2021, 2, ii.	6.4	0
54	Eine symmetriebasierte kinematische Theorie für das Design von Nanokristallâ€Morphologien. Angewandte Chemie, 0, , .	1.6	0