
Giuseppe Sciortino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2230316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyoxovanadates with emerging biomedical activities. Coordination Chemistry Reviews, 2021, 447, 214143.	9.5	115
2	Polyoxidovanadates' interactions with proteins: An overview. Coordination Chemistry Reviews, 2022, 454, 214344.	9.5	78
3	Prediction of the interaction of metallic moieties with proteins: An update for proteinâ€ligand docking techniques. Journal of Computational Chemistry, 2018, 39, 42-51.	1.5	54
4	Direct Asymmetric Hydrogenation of <i>N</i> -Methyl and <i>N</i> -Alkyl Imines with an Ir(III)H Catalyst. Journal of the American Chemical Society, 2018, 140, 16967-16970.	6.6	47
5	New V ^{IV} , V ^{IV} O, V ^V O, and V ^V O ₂ Systems: Exploring their Interconversion in Solution, Protein Interactions, and Cytotoxicity. Inorganic Chemistry, 2020, 59, 14042-14057.	1.9	46
6	Elucidation of Binding Site and Chiral Specificity of Oxidovanadium Drugs with Lysozyme through Theoretical Calculations. Inorganic Chemistry, 2017, 56, 12938-12951.	1.9	40
7	Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coordination Chemistry Reviews, 2021, 449, 214192.	9.5	40
8	GaudiMM: A modular multiâ€objective platform for molecular modeling. Journal of Computational Chemistry, 2017, 38, 2118-2126.	1.5	37
9	V ^{IV} O complexes with antibacterial quinolone ligands and their interaction with serum proteins. Dalton Transactions, 2018, 47, 2164-2182.	1.6	36
10	Nonoxido V ^{IV} Complexes: Prediction of the EPR Spectrum and Electronic Structure of Simple Coordination Compounds and Amavadin. Inorganic Chemistry, 2016, 55, 7373-7387.	1.9	35
11	Validation and Applications of Protein–Ligand Docking Approaches Improved for Metalloligands with Multiple Vacant Sites. Inorganic Chemistry, 2019, 58, 294-306.	1.9	35
12	DFT Protocol for EPR Prediction of Paramagnetic Cu(II) Complexes and Application to Protein Binding Sites. Magnetochemistry, 2018, 4, 55.	1.0	30
13	Copper(II) <i>N</i> , <i>N</i> , <i>O</i> -Chelating Complexes as Potential Anticancer Agents. Inorganic Chemistry, 2021, 60, 2939-2952.	1.9	30
14	Rationalizing the Decavanadate(V) and Oxidovanadium(IV) Binding to G-Actin and the Competition with Decaniobate(V) and ATP. Inorganic Chemistry, 2021, 60, 334-344.	1.9	29
15	Dynamic Stereoselection of Peptide Helicates and Their Selective Labeling of DNA Replication Foci in Cells**. Angewandte Chemie - International Edition, 2021, 60, 8859-8866.	7.2	29
16	Decoding Surface Interaction of V ^{IV} O Metallodrug Candidates with Lysozyme. Inorganic Chemistry, 2018, 57, 4456-4469.	1.9	28
17	Interaction of Vanadium(IV) Species with Ubiquitin: A Combined Instrumental and Computational Approach. Inorganic Chemistry, 2019, 58, 8064-8078.	1.9	28
18	ESI-MS Study of the Interaction of Potential Oxidovanadium(IV) Drugs and Amavadin with Model Proteins. Inorganic Chemistry, 2020, 59, 9739-9755.	1.9	28

GIUSEPPE SCIORTINO

#	Article	IF	CITATIONS
19	Chemistry of mixed-ligand oxidovanadium(IV) complexes of aroylhydrazones incorporating quinoline derivatives: Study of solution behavior, theoretical evaluation and protein/DNA interaction. Journal of Inorganic Biochemistry, 2019, 199, 110786.	1.5	27
20	Quantitative prediction of electronic absorption spectra of copper(II)–bioligand systems: Validation and applications. Journal of Inorganic Biochemistry, 2020, 204, 110953.	1.5	27
21	lridium-Catalyzed Isomerization of <i>N</i> -Sulfonyl Aziridines to Allyl Amines. Organic Letters, 2018, 20, 5747-5751.	2.4	25
22	BioMetAll: Identifying Metal-Binding Sites in Proteins from Backbone Preorganization. Journal of Chemical Information and Modeling, 2021, 61, 311-323.	2.5	25
23	Integrated ESI-MS/EPR/computational characterization of the binding of metal species to proteins: vanadium drug–myoglobin application. Inorganic Chemistry Frontiers, 2019, 6, 1561-1578.	3.0	24
24	Integrated experimental/computational approaches to characterize the systems formed by vanadium with proteins and enzymes. Inorganic Chemistry Frontiers, 2021, 8, 1951-1974.	3.0	24
25	Unveiling V ^{IV} O ²⁺ Binding Modes to Human Serum Albumins by an Integrated Spectroscopic–Computational Approach. Chemistry - A European Journal, 2020, 26, 11316-11326.	1.7	23
26	Effect of secondary interactions, steric hindrance and electric charge on the interaction of V ^{IV} O species with proteins. New Journal of Chemistry, 2019, 43, 17647-17660.	1.4	22
27	Functionalized Artificial Bidomain Proteins Based on an α-Solenoid Protein Repeat Scaffold: A New Class of Artificial Diels–Alderases. ACS Omega, 2019, 4, 4437-4447.	1.6	21
28	Simple Coordination Geometry Descriptors Allow to Accurately Predict Metal-Binding Sites in Proteins. ACS Omega, 2019, 4, 3726-3731.	1.6	20
29	Through‣pace Spin Coupling in a Silver(II) Porphyrin Dimer upon Stepwise Oxidations: Ag II â‹â‹Ag II , Ag â‹â‹Ag III , and Ag III â‹â‹Ag III Metallophilic Interactions. Chemistry - A European Journal, 2019, 25,	ç∥ 100798-10	1 1 8.
30	The binding modes of V ^{IV} O ²⁺ ions in blood proteins and enzymes. Chemical Communications, 2020, 56, 12218-12221.	2.2	17
31	Covalent and non-covalent binding in vanadium–protein adducts. Inorganic Chemistry Frontiers, 2021, 8, 1189-1196.	3.0	17
32	Accurate prediction of vertical electronic transitions of Ni(II) coordination compounds via time dependent density functional theory. International Journal of Quantum Chemistry, 2018, 118, e25655.	1.0	16
33	Catalytic Regioselective Isomerization of 2,2â€Disubstituted Oxetanes to Homoallylic Alcohols. Angewandte Chemie - International Edition, 2020, 59, 7521-7527.	7.2	16
34	Stepwise Oxidations in a Cofacial Copper(II) Porphyrin Dimer: Throughâ€Space Spin oupling and Interplay between Metal and Radical Spins. Chemistry - A European Journal, 2020, 26, 7869-7880.	1.7	15
35	GPathFinder: Identification of Ligand-Binding Pathways by a Multi-Objective Genetic Algorithm. International Journal of Molecular Sciences, 2019, 20, 3155.	1.8	14
36	Bonding rearrangements in organometallic reactions: from orbitals to curly arrows. Dalton Transactions, 2019, 48, 15740-15752.	1.6	14

GIUSEPPE SCIORTINO

#	Article	IF	CITATIONS
37	Comparative Mechanistic Study on the [Au(NHC)] ⁺ -Catalyzed Hydration of Alkynes, Alkenes, and Allenes. Organometallics, 2020, 39, 3469-3479.	1.1	14
38	Mild Iridium atalysed Isomerization of Epoxides. Computational Insights and Application to the Synthesis of βâ€Alkyl Amines. Advanced Synthesis and Catalysis, 2019, 361, 3624-3631.	2.1	12
39	Spectroscopic/Computational Characterization and the X-ray Structure of the Adduct of the V ^{IV} O–Picolinato Complex with RNase A. Inorganic Chemistry, 2021, 60, 19098-19109.	1.9	12
40	Mo(VI) Potential Metallodrugs: Explaining the Transport and Cytotoxicity by Chemical Transformations. Inorganic Chemistry, 2022, 61, 4513-4532.	1.9	12
41	Solution chemical properties and anticancer potential of 8-hydroxyquinoline hydrazones and their oxidovanadium(IV) complexes. Journal of Inorganic Biochemistry, 2022, 235, 111932.	1.5	12
42	Directed Self-Assembly of Trimeric DNA-Bindingchiral Miniprotein Helicates. Frontiers in Chemistry, 2018, 6, 520.	1.8	11
43	Studying the reactivity of "old―Cu(II) complexes for "novel―anticancer purposes. Journal of Inorganic Biochemistry, 2019, 195, 51-60.	1.5	11
44	Biospeciation of Potential Vanadium Drugs of Acetylacetonate in the Presence of Proteins. Frontiers in Chemistry, 2020, 8, 345.	1.8	11
45	Computational Study of Homogeneous Multimetallic Cooperative Catalysis. Topics in Catalysis, 0, , 1.	1.3	11
46	Ambiphilic boryl groups in a neutral Ni(<scp>ii</scp>) complex: a new activation mode of H ₂ . Chemical Science, 2021, 12, 2540-2548.	3.7	11
47	Mechanistic Insights on the Hydration of Terminal and Internal Allenes Catalyzed by [(NHC)Au] ⁺ . Organometallics, 2018, 37, 3543-3551.	1.1	10
48	Computational insight into the interaction of oxaliplatin with insulin. Metallomics, 2019, 11, 765-773.	1.0	10
49	Integrated Computational Study of the Cu-Catalyzed Hydration of Alkenes in Water Solvent and into the Context of an Artificial Metallohydratase. ACS Catalysis, 2019, 9, 4616-4626.	5.5	10
50	Binding of V ^{IV} O ²⁺ , V ^{IV} OL, V ^{IV} OL ₂ and V ^V O ₂ L Moieties to Proteins: Xâ€ray/Theoretical Characterization and Biological Implications. Chemistry - A European Journal, 2022, 28, .	1.7	10
51	New mixed ligand oxidovanadium(IV) complexes: Solution behavior, protein interaction and cytotoxicity. Journal of Inorganic Biochemistry, 2022, 233, 111853.	1.5	10
52	V IV O and V IV Species Formed in Aqueous Solution by the Tridentate Glutaroimide–Dioxime Ligand – An Instrumental and Computational Characterization. European Journal of Inorganic Chemistry, 2018, 2018, 1805-1816.	1.0	9
53	An Artificial Hemoprotein with Inducible Peroxidase―and Monooxygenaseâ€Like Activities. Chemistry - A European Journal, 2020, 26, 14929-14937.	1.7	9
54	Dynamic Stereoselection of Peptide Helicates and Their Selective Labeling of DNA Replication Foci in Cells**. Angewandte Chemie, 2021, 133, 8941-8948.	1.6	7

GIUSEPPE SCIORTINO

#	Article	IF	CITATIONS
55	Impact of Cu(<scp>ii</scp>) and Al(<scp>iii</scp>) on the conformational landscape of amyloidβ ₁₋₄₂ . Physical Chemistry Chemical Physics, 2021, 23, 13023-13032.	1.3	7
56	Tridentate (O,N,O) ligands as potential chelator compounds for iron overload. Polyhedron, 2017, 123, 192-205.	1.0	6
57	GARLEEK: Adding an extra flavor to ONIOM. Journal of Computational Chemistry, 2019, 40, 381-386.	1.5	6
58	Chiral Cyclobutane-Containing Cell-Penetrating Peptides as Selective Vectors for Anti-Leishmania Drug Delivery Systems. International Journal of Molecular Sciences, 2020, 21, 7502.	1.8	4
59	Synthesis and characterization of new Pd(<scp>ii</scp>) and Pt(<scp>ii</scp>) complexes with 3-substituted 1-(2-pyridyl)imidazo[1,5- <i>a</i>]pyridine ligands. Dalton Transactions, 2021, 50, 4859-4873.	1.6	4
60	Stereoselective Self-Assembly of DNA Binding Helicates Directed by the Viral β-Annulus Trimeric Peptide Motif. Bioconjugate Chemistry, 2021, 32, 1564-1569.	1.8	3
61	Ferromagnetic Coupling in Oxidovanadium(IV)–Porphyrin Radical Dimers. Inorganic Chemistry, 2021, 60, 16492-16506.	1.9	3
62	Introducing the penicillamine moiety into a metallopeptide mimicking the NiSOD enzyme: electronic and kinetic effects. Inorganic Chemistry Frontiers, 2022, 9, 310-322.	3.0	3
63	Catalytic Regioselective Isomerization of 2,2â€Disubstituted Oxetanes to Homoallylic Alcohols. Angewandte Chemie, 2020, 132, 7591-7597.	1.6	1
64	Successes and Challenges in Multiscale Modelling of Artificial Metalloenzymes: the Case Study of POP-Rh2 Cyclopropanase. Faraday Discussions, 2022, , .	1.6	1
65	Controlling oncogenic KRAS signaling pathways with a Palladium-responsive peptide. Communications Chemistry, 2022, 5, .	2.0	1

66 Throughâ€Space Spin Coupling in a Silver(II) Porphyrin Dimer upon Stepwise Oxidations: Ag II â‹...â‹...â‹...Ag II , Ag II , â‹...â‹...â‹...Ag III , and Ag III â‹...â‹...Ag III Metallophilic Interactions. Chemistry - A European Journal, 2019, 25, 10025-10025.