Om P Khatri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2230256/publications.pdf

Version: 2024-02-01

96 papers 5,297 citations

38
h-index

70 g-index

98 all docs 98 docs citations 98 times ranked 5607 citing authors

#	Article	IF	Citations
1	Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Advances in Colloid and Interface Science, 2019, 272, 102009.	14.7	490
2	Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Applied Catalysis B: Environmental, 2016, 181, 352-362.	20.2	286
3	Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chemical Communications, 2011, 47, 12673.	4.1	263
4	Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption pathways. Journal of Colloid and Interface Science, 2017, 501, 11-21.	9.4	230
5	Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications. Journal of Materials Chemistry, 2012, 22, 21032.	6.7	229
6	Chemically Functionalized Reduced Graphene Oxide as a Novel Material for Reduction of Friction and Wear. Journal of Physical Chemistry C, 2014, 118, 14394-14402.	3.1	210
7	Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic activity for the oxidation of alcohols. Journal of Materials Chemistry, 2012, 22, 5427.	6.7	191
8	Hierarchical Microspheres of MoS ₂ Nanosheets: Efficient and Regenerative Adsorbent for Removal of Water-Soluble Dyes. Industrial & Engineering Chemistry Research, 2016, 55, 7124-7131.	3.7	179
9	Alkyl-Chain-Grafted Hexagonal Boron Nitride Nanoplatelets as Oil-Dispersible Additives for Friction and Wear Reduction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3708-3716.	8.0	145
10	Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coordination Chemistry Reviews, 2021, 445, 214100.	18.8	131
11	Covalently attached graphene–ionic liquid hybrid nanomaterials: synthesis, characterization and tribological application. Journal of Materials Chemistry A, 2016, 4, 926-937.	10.3	129
12	Halogen-Free Bis(imidazolium)/Bis(ammonium)-Di[bis(salicylato)borate] Ionic Liquids As Energy-Efficient and Environmentally Friendly Lubricant Additives. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15318-15328.	8.0	126
13	Graphene-like porous carbon nanostructure from Bengal gram bean husk and its application for fast and efficient adsorption of organic dyes. Applied Surface Science, 2019, 476, 647-657.	6.1	103
14	Ultrasound assisted shape regulation of CuO nanorods in ionic liquids and their use as energy efficient lubricant additives. Journal of Materials Chemistry A, 2013, 1, 5612.	10.3	95
15	Fatty acid ionic liquids as environmentally friendly lubricants for low friction and wear. RSC Advances, 2016, 6, 3462-3469.	3.6	95
16	Fatty-Acid-Constituted Halogen-Free Ionic Liquids as Renewable, Environmentally Friendly, and High-Performance Lubricant Additives. Industrial & Engineering Chemistry Research, 2016, 55, 856-865.	3.7	90
17	Fast and efficient adsorptive removal of organic dyes and active pharmaceutical ingredient by microporous carbon: Effect of molecular size and charge. Chemical Engineering Journal, 2019, 378, 122218.	12.7	89
18	Surface chemistry of graphene and graphene oxide: A versatile route for their dispersion and tribological applications. Advances in Colloid and Interface Science, 2020, 283, 102215.	14.7	76

#	Article	IF	CITATIONS
19	Self-Assembly of Ionic Liquid (BMI-PF ₆)-Stabilized Gold Nanoparticles on a Silicon Surface: Chemical and Structural Aspects. Langmuir, 2008, 24, 7785-7792.	3.5	74
20	Synthesis, dispersion and lubrication potential of basal plane functionalized alkylated graphene nanosheets. RSC Advances, 2015, 5, 25565-25571.	3.6	71
21	Hexamolybdenum clusters supported on graphene oxide: Visible-light induced photocatalytic reduction of carbon dioxide into methanol. Carbon, 2015, 94, 91-100.	10.3	69
22	Halogen-free imidazolium/ammonium-bis(salicylato)borate ionic liquids as high performance lubricant additives. RSC Advances, 2014, 4, 1293-1301.	3.6	63
23	Fruit waste-derived cellulose and graphene-based aerogels: Plausible adsorption pathways for fast and efficient removal of organic dyes. Journal of Colloid and Interface Science, 2022, 608, 2870-2883.	9.4	63
24	Structural Organization of Gold Nanoparticles onto the ITO Surface and Its Optical Properties as a Function of Ensemble Size. Langmuir, 2008, 24, 3787-3793.	3.5	60
25	Alkylated graphene oxide and reduced graphene oxide: Grafting density, dispersion stability to enhancement of lubrication properties. Journal of Colloid and Interface Science, 2019, 541, 150-162.	9.4	60
26	Chemically functionalized graphene for lubricant applications: Microscopic and spectroscopic studies of contact interfaces to probe the role of graphene for enhanced tribo-performance. Journal of Colloid and Interface Science, 2018, 513, 666-676.	9.4	59
27	Grafting of a rhenium-oxo complex on Schiff base functionalized graphene oxide: an efficient catalyst for the oxidation of amines. Dalton Transactions, 2014, 43, 8054.	3.3	57
28	Hydrothermal Deoxygenation of Graphene Oxide: Chemical and Structural Evolution. Chemistry - an Asian Journal, 2013, 8, 2070-2078.	3.3	55
29	PEG-mediated hydrothermal synthesis of hierarchical microspheres of MoS 2 nanosheets and their potential for lubrication application. Journal of Industrial and Engineering Chemistry, 2016, 42, 87-94.	5.8	55
30	Hydrothermal deoxygenation of graphene oxide in sub- and supercritical water. RSC Advances, 2014, 4, 22589.	3.6	52
31	Halogen-free ionic liquids: effect of chelated orthoborate anion structure on their lubrication properties. RSC Advances, 2015, 5, 25287-25294.	3.6	50
32	Physicochemical and tribophysical properties of trioctylalkylammonium bis(salicylato)borate (N888n-BScB) ionic liquids: effect of alkyl chain length. Physical Chemistry Chemical Physics, 2017, 19, 6433-6442.	2.8	50
33	Fatty acids-derived protic ionic liquids as lubricant additive to synthetic lube base oil for enhancement of tribological properties. Journal of Molecular Liquids, 2019, 293, 111444.	4.9	49
34	Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for CO ₂ reduction under visible light irradiation. RSC Advances, 2015, 5, 54929-54935.	3.6	47
35	Octadecanethiol-grafted molybdenum disulfide nanosheets as oil-dispersible additive for reduction of friction and wear. FlatChem, 2017, 3, 16-25.	5.6	44
36	Graphene-Based Aqueous Lubricants: Dispersion Stability to the Enhancement of Tribological Properties. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51785-51796.	8.0	41

#	Article	IF	Citations
37	Effects of Chain Length and Heat Treatment on the Nanotribology of Alkylsilane Monolayers Self-Assembled on a Rough Aluminum Surface. Journal of Physical Chemistry B, 2005, 109, 23405-23414.	2.6	39
38	Graphene Oxide Supported Molybdenum Cluster: First Heterogenized Homogeneous Catalyst for the Synthesis of Dimethylcarbonate from CO 2 and Methanol. Chemistry - A European Journal, 2015, 21, 3488-3494.	3.3	39
39	Fatty acid-derived ionic liquids as renewable lubricant additives: Effect of chain length and unsaturation. Journal of Molecular Liquids, 2020, 301, 112322.	4.9	38
40	Synergistic lubrication performance by incommensurately stacked ZnO-decorated reduced graphene oxide/MoS2 heterostructure. Journal of Colloid and Interface Science, 2020, 580, 730-739.	9.4	38
41	A scanning electron microscope based new method for determining degree of substitution of sodium carboxymethyl cellulose. Journal of Microscopy, 2012, 246, 43-52.	1.8	34
42	Selfâ∈Assembly of Graphene Oxide on Silicon Substrate via Covalent Interaction: Low Friction and Remarkable Wearâ∈Resistivity. Advanced Materials Interfaces, 2016, 3, 1500410.	3.7	33
43	Copper matrix composites reinforced by rGO-MoS2 hybrid: Strengthening effect to enhancement of tribological properties. Composites Part B: Engineering, 2019, 173, 106931.	12.0	33
44	Direct growth of nanostructural MoS2 over the h-BN nanoplatelets: An efficient heterostructure for visible light photoreduction of CO2 to methanol. Journal of CO2 Utilization, 2020, 42, 101345.	6.8	33
45	Metal-free one-pot synthesis of amides using graphene oxide as an efficient catalyst. RSC Advances, 2014, 4, 41690-41695.	3.6	31
46	Single Cell Oil from Oleaginous Yeast Grown on Sugarcane Bagasse-Derived Xylose: An Approach toward Novel Biolubricant for Low Friction and Wear. ACS Sustainable Chemistry and Engineering, 2018, 6, 275-283.	6.7	31
47	Structural-Defect-Mediated Grafting of Alkylamine on Few-Layer MoS ₂ and Its Potential for Enhancement of Tribological Properties. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30720-30730.	8.0	30
48	Alkylamine-functionalized hexagonal boron nitride nanoplatelets as a novel material for the reduction of friction and wear. Physical Chemistry Chemical Physics, 2016, 18, 22879-22888.	2.8	29
49	Frictional Responses of Octadecyltrichlorosilane (OTS) and 1H, 1H, 2H, 2H-Perfluorooctyltrichlorosilane (FOTS) Monolayers Self-assembled on Aluminium over Six Orders of Contact Length Scale. Tribology Letters, 2005, 20, 235-246.	2.6	28
50	Boundary lubrication additives for aluminium: A journey from nano to macrotribology. Tribology International, 2005, 38, 1022-1034.	5.9	27
51	Charge-driven interaction for adsorptive removal of organic dyes using ionic liquid-modified graphene oxide. Journal of Colloid and Interface Science, 2022, 607, 1973-1985.	9.4	27
52	Catalytic cracking of jatropha-derived fast pyrolysis oils with VGO and their NMR characterization. RSC Advances, 2015, 5, 398-409.	3.6	26
53	Molecular pillar supported graphene oxide framework: conformational heterogeneity and tunable d-spacing. Physical Chemistry Chemical Physics, 2015, 17, 20822-20829.	2.8	26
54	Organophosphate anion based low viscosity ionic liquids as oil-miscible additives for lubrication enhancement. Journal of Molecular Liquids, 2018, 272, 430-438.	4.9	26

#	Article	IF	Citations
55	Regulation of Pattern Dimension as a Function of Vacuum Pressure: Alkyl Monolayer Lithography. Langmuir, 2008, 24, 12077-12084.	3.5	25
56	Oil-miscible, halogen-free, and surface-active lauryl sulphate-derived ionic liquids for enhancement of tribological properties. Journal of Molecular Liquids, 2020, 318, 114005.	4.9	23
57	Evaluation of tribological performance of copper-based composites containing nano-structural 2D materials and their hybrid. Tribology International, 2021, 153, 106645.	5. 9	23
58	Self-Assembly Guided One-Dimensional Arrangement of Gold Nanoparticles: A Facile Approach. Journal of Physical Chemistry C, 2008, 112, 16182-16185.	3.1	22
59	Fabrication of reduced graphene oxide micro patterns by vacuum-ultraviolet irradiation: From chemical and structural evolution to improving patterning precision by light collimation. Carbon, 2017, 119, 82-90.	10.3	22
60	Pristine and Alkylated MoS2 Nanosheets for Enhancement of Tribological Performance of Paraffin Grease Under Boundary Lubrication Regime. Journal of Tribology, 2019, 141, .	1.9	22
61	Thermophysical properties of trioctylalkylammonium bis(salicylato)borate ionic liquids: Effect of alkyl chain length. Journal of Molecular Liquids, 2018, 269, 540-546.	4.9	21
62	Thermal stability of octadecyltrichlorosilane self-assembled on a polycrystalline aluminium surface. Surface Science, 2004, 572, 228-238.	1.9	20
63	Chemically functionalized 2D/2D hexagonal boron Nitride/Molybdenum disulfide heterostructure for enhancement of lubrication properties. Applied Surface Science, 2022, 579, 152157.	6.1	20
64	Boundary lubrication capabilities of alkylsilane monolayer self-assembled on aluminium as investigated using FTIR spectroscopy and nanotribometry. Surface Science, 2006, 600, 4399-4404.	1.9	19
65	lonicâ€Liquidâ€Functionalized Copper Oxide Nanorods for Photocatalytic Splitting of Water. ChemPlusChem, 2016, 81, 489-495.	2.8	18
66	Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity. Applied Surface Science, 2016, 364, 878-885.	6.1	18
67	Graphene-polyaniline nanocomposite based coatings: Role of convertible forms of polyaniline to mitigate steel corrosion. Applied Surface Science, 2022, 599, 153939.	6.1	18
68	Tribological Performance of Cu–rGO–MoS2 Nanocomposites Under Dry Sliding. Tribology Letters, 2020, 68, 1.	2.6	17
69	Tuning the band-gap of h-boron nitride nanoplatelets by covalent grafting of imidazolium ionic liquids. RSC Advances, 2016, 6, 21119-21126.	3.6	16
70	Mechano-adaptive thin film of graphene-based polymeric nanocomposite for enhancement of lubrication properties. Applied Surface Science, 2021, 538, 148041.	6.1	16
71	Effect of Graphene-Based Nanoadditives on the Tribological and Rheological Performance of Paraffin Grease. Journal of Materials Engineering and Performance, 2020, 29, 2235-2247.	2.5	15
72	Fractional distribution of graphene oxide and its potential as an efficient and reusable solid catalyst for esterification reactions. Journal of Physical Organic Chemistry, 2014, 27, 944-951.	1.9	14

#	Article	IF	Citations
73	Synergistic effect of binary systems of nanostructured <scp>MoS₂</scp> /scp>SiO ₂ and <scp>GO</scp> /scp>SiO ₂ as additives to coconut <scp>oilâ€derived</scp> grease: Enhancement of physicochemical and lubrication properties. Lubrication Science, 2021, 33, 290-307.	2.1	14
74	Alkali-Assisted Hydrothermal Exfoliation and Surfactant-Driven Functionalization of <i>h</i> hhli>-BN Nanosheets for Lubrication Enhancement. ACS Applied Nano Materials, 2021, 4, 9143-9154.	5.0	14
75	h-BN and graphene-based ultralight hybrid aerogels: Highly efficient sorbent for recovery of hydrocarbon oils and organic solvents. Journal of Environmental Chemical Engineering, 2021, 9, 106788.	6.7	14
76	Friction of Octadecyltrichlorosilane Monolayer Self-Assembled on Silicon Wafer in 0% Relative Humidity. Journal of Physical Chemistry C, 2007, 111, 2696-2701.	3.1	13
77	Reductive patterning of graphene oxide by vacuum–ultraviolet irradiation in high vacuum. Applied Physics Express, 2014, 7, 075101.	2.4	12
78	Nanofluid lubrication and high pressure Raman studies of oxygen functionalized graphene nanosheets. Journal of Industrial and Engineering Chemistry, 2018, 61, 97-105.	5.8	12
79	Spatially Controlled Functionalization and Chemical Manipulation to Fabricate Two-Dimensional Arrays of Gold Nanoparticles onto Indium Tin Oxide. Japanese Journal of Applied Physics, 2008, 47, 5048-5052.	1.5	11
80	UV induced covalent assembly of gold nanoparticles in linear patterns on oxide free silicon surface. Journal of Materials Chemistry, 2012, 22, 16546.	6.7	10
81	Antimicrobial and lubrication properties of 1-acetyl-3-hexylbenzotriazolium benzoate/sorbate ionic liquids. RSC Advances, 2016, 6, 46567-46572.	3.6	10
82	Aminoguanidine-based deep eutectic solvents as environmentally-friendly and high-performance lubricant additives. Journal of Molecular Liquids, 2021, 339, 116829.	4.9	10
83	Surface Functionalization of WS ₂ Nanosheets with Alkyl Chains for Enhancement of Dispersion Stability and Tribological Properties. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1334-1346.	8.0	10
84	Covalent assembly of silver nanoparticles on hydrogen-terminated silicon surface. Journal of Colloid and Interface Science, 2012, 382, 22-27.	9.4	8
85	Microtribological properties of a spin-coated thin film of 1-butyl-3-(propyltrimethoxysilane)imidazolium bis(mandelato)borate ionic liquid. RSC Advances, 2016, 6, 78296-78302.	3 . 6	8
86	Ionic Liquids-Based Aqueous Lubricants: Emulsion Stability to Enhancement of Surface Wettability and Tribological Properties. Industrial & Engineering Chemistry Research, 2021, 60, 333-342.	3.7	8
87	Reinforcing the Near Eutectic Aluminum–Silicon Alloy with Graphene: An Approach toward Self‣ubricating Composite. Advanced Engineering Materials, 2021, 23, 2000910.	3.5	6
88	Tribological Investigations of Two-Dimensional Nanostructured Lamellar Materials as Additives to Castor-Oil-Derived Lithium Grease. Journal of Tribology, 2022, 144, .	1.9	6
89	Efficient friction and wear reduction of Al-Si alloy via tribofilms generated from synergistic interaction of ZDDP and chemically functionalized h-BN additives. Applied Surface Science, 2022, 595, 153520.	6.1	6
90	Frictional Response of a Silane Monolayer to Sliding in a Humid Environment. Journal of Physical Chemistry C, 2007, 111, 16339-16344.	3.1	5

#	ARTICLE	IF	CITATION
91	Graphene Oxide Tribofilms Enhance the Scratch Resistance of Silica Glasses. ACS Applied Nano Materials, 2022, 5, 4812-4822.	5.0	4
92	Load Induced Microstructure Evolution and Friction in an Organic Monolayer Self-assembled on a Silicon Substrate. Tribology Letters, 2008, 32, 179-188.	2.6	3
93	Self-alignment of Gold Nanoparticles through the Control of Particle-substrate and Particle-particle Interactions. Procedia Engineering, 2012, 36, 374-381.	1.2	3
94	Wear and friction behavior of copper based nano hybrid composites fabricated by spark plasma sintering. Materials Research Express, 2019, 6, 0850h2.	1.6	3
95	Nanostructured Layered Materials as Novel Lubricant AdditivesÂfor Tribological Applications. Materials Forming, Machining and Tribology, 2020, , 157-178.	1.1	3
96	Probing the diffusion of vacuum ultraviolet (\hat{l} »=172nm) induced oxidants by nanoparticles immobilization. Applied Surface Science, 2009, 255, 9817-9821.	6.1	2