Graeme Greaves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2229998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observations of He platelets during He ion irradiation in 3C SiC. Journal of Nuclear Materials, 2022, 559, 153426.	1.3	8
2	Helium implantation damage resistance in nanocrystalline W-Ta-V-Cr high entropy alloys. Materials Today Energy, 2021, 19, 100599.	2.5	14
3	In situ He+ irradiation of the double solid solution (Ti0.5,Zr0.5)2(Al0.5,Sn0.5)C MAX phase: Defect evolution in the 350–800 °C temperature range. Acta Materialia, 2021, 206, 116606.	3.8	9
4	Anomalous nucleation of crystals within amorphous germanium nanowires during thermal annealing. Nanotechnology, 2021, 32, 285707.	1.3	1
5	Comparative irradiation response of an austenitic stainless steel with its high-entropy alloy counterpart. Intermetallics, 2021, 132, 107130.	1.8	17
6	In situ TEM investigations of the microstructural changes and radiation tolerance in SiC nanowhiskers irradiated with He ions at high temperatures. Acta Materialia, 2021, 210, 116820.	3.8	9
7	In-situ TEM investigation of nano-scale helium bubble evolution in tantalum-doped tungsten at 800°C. Journal of Nuclear Materials, 2021, 550, 152910.	1.3	16
8	Nanostructuring Germanium Nanowires by In Situ TEM Ion Irradiation. Particle and Particle Systems Characterization, 2021, 38, 2100154.	1.2	0
9	Irradiation stability and induced ferromagnetism in a nanocrystalline CoCrCuFeNi highly-concentrated alloy. Nanoscale, 2021, 13, 20437-20450.	2.8	9
10	Low-temperature investigations of ion-induced amorphisation in silicon carbide nanowhiskers under helium irradiation. Applied Surface Science, 2020, 501, 143969.	3.1	8
11	Prototypic Lightweight Alloy Design for Stellarâ€Radiation Environments. Advanced Science, 2020, 7, 2002397.	5.6	7
12	The effect of flux on ion irradiation-enhanced precipitation in AISI-316L: An in-situ TEM study. Journal of Nuclear Materials, 2020, 541, 152414.	1.3	5
13	Synthesis and <i>in situ</i> ion irradiation of A-site deficient zirconate perovskite ceramics. Journal of Materials Chemistry A, 2020, 8, 19454-19466.	5.2	7
14	Dual-Beam Irradiation Stability of Amorphous Silicon Oxycarbide at 300°C and 500°C. Jom, 2020, 72, 4002-4007.	0.9	4
15	In-Situ Helium Implantation and TEM Investigation of Radiation Tolerance to Helium Bubble Damage in Equiaxed Nanocrystalline Tungsten and Ultrafine Tungsten-TiC Alloy. Materials, 2020, 13, 794.	1.3	11
16	Radiation Damage Suppression in AISI-316 Steel Nanoparticles: Implications for the Design of Future Nuclear Materials. ACS Applied Nano Materials, 2020, 3, 9652-9662.	2.4	3
17	Direct Comparison of Tungsten Nanoparticles and Foils under Helium Irradiation at High Temperatures Studied via In-Situ Transmission Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 1576-1577.	0.2	0
18	Understanding amorphization mechanisms using ion irradiation in situ a TEM and 3D damage reconstruction. Ultramicroscopy, 2019, 207, 112838.	0.8	7

GRAEME GREAVES

#	Article	IF	CITATIONS
19	Investigating Helium Bubble Nucleation and Growth through Simultaneous In-Situ Cryogenic, Ion Implantation, and Environmental Transmission Electron Microscopy. Materials, 2019, 12, 2618.	1.3	8
20	Thermodynamics of an austenitic stainless steel (AISI-348) under in situ TEM heavy ion irradiation. Acta Materialia, 2019, 179, 360-371.	3.8	14
21	Chemical effects on He bubble superlattice formation in high entropy alloys. Current Opinion in Solid State and Materials Science, 2019, 23, 100762.	5.6	24
22	Investigating sluggish diffusion in a concentrated solid solution alloy using ion irradiation with in situ TEM. Intermetallics, 2019, 110, 106461.	1.8	22
23	A candidate accident tolerant fuel system based on a highly concentrated alloy thin film. Materials Today Energy, 2019, 12, 356-362.	2.5	12
24	New Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system at the University of Huddersfield. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 931, 37-43.	0.7	42
25	Thermal stability and irradiation response of nanocrystalline CoCrCuFeNi high-entropy alloy. Nanotechnology, 2019, 30, 294004.	1.3	38
26	Intermetallic Re phases formed in ion irradiated WRe alloy. Journal of Nuclear Materials, 2019, 514, 123-127.	1.3	8
27	Rapid and damage-free outgassing of implanted helium from amorphous silicon oxycarbide. Scientific Reports, 2018, 8, 5009.	1.6	13
28	Effects of crystallographic and geometric orientation on ion beam sputtering of gold nanorods. Scientific Reports, 2018, 8, 512.	1.6	9
29	Ion implantation in nanodiamonds: size effect and energy dependence. Scientific Reports, 2018, 8, 5099.	1.6	25
30	Enhanced Radiation Tolerance of Tungsten Nanoparticles to He Ion Irradiation. Nanomaterials, 2018, 8, 1052.	1.9	14
31	Energetic particle irradiation study of TiN coatings: are these films appropriate for accident tolerant fuels?. Journal of Nuclear Materials, 2018, 512, 239-245.	1.3	31
32	Ion-beam-induced bending of semiconductor nanowires. Nanotechnology, 2018, 29, 335701.	1.3	12
33	Shape Modification of Germanium Nanowires during Ion Irradiation and Subsequent Solidâ€Phase Epitaxial Growth. Advanced Materials Interfaces, 2018, 5, 1800276.	1.9	8
34	A candidate fusion engineering material, WC-FeCr. Scripta Materialia, 2018, 155, 129-133.	2.6	21
35	The effect of temperature on bubble lattice formation in copper under in situ He ion irradiation. Scripta Materialia, 2017, 131, 108-111.	2.6	16
36	Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten. Materials Research Letters, 2017, 5, 343-349.	4.1	81

GRAEME GREAVES

#	Article	IF	CITATIONS
37	Engineering self-organising helium bubble lattices in tungsten. Scientific Reports, 2017, 7, 7724.	1.6	33
38	Effects of temperature on the ion-induced bending of germanium and silicon nanowires. Materials Research Express, 2017, 4, 075056.	0.8	5
39	Effect of He implantation on the microstructure of zircaloy-4 studied using in situ TEM. Journal of Nuclear Materials, 2017, 493, 230-238.	1.3	23
40	A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten. Journal of Nuclear Materials, 2017, 495, 492-503.	1.3	47
41	Effect of He-appm/DPA ratio on the damage microstructure of tungsten. MRS Advances, 2016, 1, 2893-2899.	0.5	19
42	TEM with in situ Ion Irradiation of Nuclear Materials under In-Service Conditions. Microscopy and Microanalysis, 2016, 22, 1460-1461.	0.2	1
43	An in situ transmission electron microscopy study of the ion irradiation induced amorphisation of silicon by He and Xe. Scripta Materialia, 2016, 113, 190-193.	2.6	17
44	Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions. Journal of Nuclear Materials, 2015, 458, 216-223.	1.3	137
45	Helium bubble formation in nuclear glass by in-situ TEM ion implantation. Journal of Nuclear Materials, 2014, 452, 565-568.	1.3	26
46	In-situ TEM studies of ion-irradiation induced bubble development and mechanical deformation in model nuclear materials. Materials Research Society Symposia Proceedings, 2014, 1645, 1.	0.1	3
47	Sputtering yields exceeding 1000 by 80keV Xe irradiation of Au nanorods. Nuclear Instruments & Methods in Physics Research B, 2014, 341, 17-21.	0.6	17
48	Dynamic microstructural evolution of graphite under displacing irradiation. Carbon, 2014, 68, 273-284.	5.4	33
49	Kink Band Formation in Graphite under Ion Irradiation at 100 and 298 K. Materials Transactions, 2014, 55, 447-450.	0.4	8
50	In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphene. Scientific Reports, 2014, 4, 6334.	1.6	62
51	In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments. Scientific Reports, 2014, 4, 4716.	1.6	161
52	Enhanced Sputtering Yields from Single-Ion Impacts on Gold Nanorods. Physical Review Letters, 2013, 111, 065504.	2.9	71
53	Helium irradiation effects in polycrystalline Si, silica, and single crystal Si. Journal of Applied Physics, 2012, 111, .	1.1	18
54	A cross-sectional transmission electron microscopy study of iron recovered from a laser-heated diamond anvil cell. Journal of Physics: Conference Series, 2008, 126, 012047.	0.3	2