Xiaopeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2229738/publications.pdf

Version: 2024-02-01

245 15,311 69 110 papers citations h-index g-index

248 248 248 11618
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Shapeâ€Dependent Complementary Ditopic Terpyridine Pair with Two Levels of Selfâ€Recognition for Coordinationâ€Driven Selfâ€Assembly. Macromolecular Rapid Communications, 2023, 44, .	3.9	4
2	Multidimensional Mass Spectrometry Assisted Metallo-Supramolecular Chemistry. CCS Chemistry, 2022, 4, 785-808.	7.8	36
3	A Hydrogenâ€Bonded Ravel Assembled by Anion Coordination. Angewandte Chemie, 2022, 134, .	2.0	7
4	Flexible Vertex Engineers the Controlled Assembly of Distorted Supramolecular Tetrahedral and Octahedral Cages. Research, 2022, 2022, 9819343.	5.7	8
5	Terpyridineâ€Based 3D Discrete Metallosupramolecular Architectures. Macromolecular Rapid Communications, 2022, 43, e2200004.	3.9	16
6	Construction of emissive ruthenium(II) metallacycle over 1000 nm wavelength for in vivo biomedical applications. Nature Communications, 2022, 13, 2009.	12.8	66
7	Porous Polymers as Universal Reversal Agents for Heparin Anticoagulants through an Inclusion–Sequestration Mechanism. Advanced Materials, 2022, 34, e2200549.	21.0	18
8	Metalloâ€Supramolecular Octahedral Cages with Three Types of Chirality towards Spontaneous Resolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
9	Side Group of Hydrophobic Amino Acids Controls Chiral Discrimination among Chiral Counterions and Metal–Organic Cages. Nano Letters, 2022, 22, 4421-4428.	9.1	5
10	Porphyrin-Based Multicomponent Metallacage: Host–Guest Complexation toward Photooxidation-Triggered Reversible Encapsulation and Release. Jacs Au, 2022, 2, 1479-1487.	7.9	34
11	Hexaphenylbenzeneâ€Based Deep Blueâ€Emissive Metallacages as Donors for Lightâ€Harvesting Systems. Angewandte Chemie, 2022, 134, .	2.0	4
12	Hexaphenylbenzeneâ€Based Deep Blueâ€Emissive Metallacages as Donors for Lightâ€Harvesting Systems. Angewandte Chemie - International Edition, 2022, 61, .	13.8	37
13	Metalloâ€Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angewandte Chemie, 2021, 133, 1301-1309.	2.0	2
14	Metalloâ€Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angewandte Chemie - International Edition, 2021, 60, 1281-1289.	13.8	18
15	Increasing the size and complexity of discrete 2D metallosupramolecules. Nature Reviews Materials, 2021, 6, 145-167.	48.7	78
16	Radical Cyclic [3]Daisy Chains. CheM, 2021, 7, 174-189.	11.7	26
17	Doubleâ€Layered Supramolecular Prisms Selfâ€Assembled by Geometrically Nonâ€equivalent Tetratopic Subunits. Angewandte Chemie, 2021, 133, 1318-1325.	2.0	8
18	Doubleâ€Layered Supramolecular Prisms Selfâ€Assembled by Geometrically Nonâ€equivalent Tetratopic Subunits. Angewandte Chemie - International Edition, 2021, 60, 1298-1305.	13.8	31

#	Article	IF	CITATIONS
19	Synthesis, optical properties and inÂvitro cell viability of novel spiropyrans and their photostationary states. Tetrahedron, 2021, 80, 131854.	1.9	17
20	Clover leaf-shaped supramolecules assembled using a predesigned metallo-organic ligand. Organic Chemistry Frontiers, 2021, 8, 3244-3249.	4.5	5
21	Acid-Activated Motion Switching of DB24C8 between Two Discrete Platinum(II) Metallacycles. Molecules, 2021, 26, 716.	3.8	0
22	Anion mediated, tunable isoguanosine self-assemblies: decoding the conformation influence and solvent effects. Chemical Science, 2021, 12, 7569-7574.	7.4	11
23	Nanocomplex made up of antimicrobial metallo-supramolecules and model biomembranes – characterization and enhanced fluorescence. Nanoscale, 2021, 13, 14973-14979.	5 . 6	3
24	Photoresponsive glyco-nanostructures integrated from supramolecular metallocarbohydrates for the reversible capture and release of lectins. Polymer Chemistry, 2021, 12, 3096-3104.	3.9	2
25	Self-Assembly of Metallo-Supramolecules with Dissymmetrical Ligands and Characterization by Scanning Tunneling Microscopy. Journal of the American Chemical Society, 2021, 143, 1224-1234.	13.7	33
26	Olive-Shaped Organic Cages: Synthesis and Remarkable Promotion of Hydrazone Condensation through Encapsulation in Water. Journal of Organic Chemistry, 2021, 86, 3943-3951.	3.2	11
27	Self assembled cages with mechanically interlocked cucurbiturils. Supramolecular Chemistry, 2021, 33, 8-32.	1.2	0
28	Hierarchical Self-Assembly of Nanowires on the Surface by Metallo-Supramolecular Truncated Cuboctahedra. Journal of the American Chemical Society, 2021, 143, 5826-5835.	13.7	53
29	Tetraphenylethyleneâ€Based Multicomponent Emissive Metallacages as Solidâ€State Fluorescent Materials. Angewandte Chemie, 2021, 133, 12401-12405.	2.0	27
30	Tetraphenylethyleneâ€Based Multicomponent Emissive Metallacages as Solidâ€State Fluorescent Materials. Angewandte Chemie - International Edition, 2021, 60, 12293-12297.	13.8	83
31	Conformational effect on fluorescence emission of tetraphenylethylene-based metallacycles. Chinese Chemical Letters, 2021, 32, 1691-1695.	9.0	22
32	Drum-like Metallacages with Size-Dependent Fluorescence: Exploring the Photophysics of Tetraphenylethylene under Locked Conformations. Journal of the American Chemical Society, 2021, 143, 9215-9221.	13.7	56
33	Supramolecular triangular orthobicupola: Self-assembly of a giant Johnson solid J27. CheM, 2021, 7, 2429-2441.	11.7	30
34	Narcissistic self-sorting in anion-coordination-driven assemblies. Chemical Communications, 2021, 57, 6078-6081.	4.1	13
35	Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity. Journal of the American Chemical Society, 2021, 143, 399-408.	13.7	104
36	Visible-Light-Driven Rotation of Molecular Motors in Discrete Supramolecular Metallacycles. Journal of the American Chemical Society, 2021, 143, 442-452.	13.7	72

#	Article	IF	CITATIONS
37	Introducing Seven Transition Metal Ions into Terpyridine-Based Supramolecules: Self-Assembly and Dynamic Ligand Exchange Study. Journal of the American Chemical Society, 2020, 142, 1811-1821.	13.7	53
38	Supramolecular metallacyclic hydrogels with tunable strength switched by host–guest interactions. Polymer Chemistry, 2020, 11, 882-888.	3.9	4
39	Self-Assembled Saccharide-Functionalized Amphiphilic Metallacycles as Biofilms Inhibitor via "Sweet Talking― ACS Macro Letters, 2020, 9, 61-69.	4.8	15
40	Selfâ€Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Live ell Imaging. Angewandte Chemie, 2020, 132, 10237-10245.	2.0	19
41	Selfâ€Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Liveâ€Cell Imaging. Angewandte Chemie - International Edition, 2020, 59, 10151-10159.	13.8	99
42	Water-Soluble 3D Covalent Organic Framework that Displays an Enhanced Enrichment Effect of Photosensitizers and Catalysts for the Reduction of Protons to H ₂ . ACS Applied Materials & ACS ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS	8.0	58
43	An Immunomodulatory Therapeutic Vaccine Targeting Oligomeric Amyloid-β. Journal of Alzheimer's Disease, 2020, 77, 1639-1653.	2.6	8
44	Highly Emissive Perylene Diimide-Based Metallacages and Their Host–Guest Chemistry for Information Encryption. Journal of the American Chemical Society, 2020, 142, 18763-18768.	13.7	114
45	Self-Assembly of Metallacages into Centimeter Films with Tunable Size and Emissions. Journal of the American Chemical Society, 2020, 142, 17933-17937.	13.7	19
46	Over one century after discovery: pyrylium salt chemistry emerging as a powerful approach for the construction of complex macrocycles and metallo-supramolecules. Chemical Science, 2020, 11, 12249-12268.	7.4	34
47	Formation of Planar Chiral Platinum Triangles via Pillar[5]arene for Circularly Polarized Luminescence. Journal of the American Chemical Society, 2020, 142, 17340-17345.	13.7	125
48	The Covalent and Coordination Co-Driven Assembly of Supramolecular Octahedral Cages with Controllable Degree of Distortion. Journal of the American Chemical Society, 2020, 142, 13356-13361.	13.7	41
49	Multiple Transformations among Anion-based A _{2<i>n</i>} L _{3<i>n</i>} Assemblies: Bicapped Trigonal Antiprism A ₈ L ₁₂ , Tetrahedron A ₄ L ₆ , and Triple Helicate A ₂ L ₃ (A = Anion). Journal of the American Chemical Society. 2020. 142. 21160-21168.	13.7	36
50	Hierarchical Self-Assembly of a Pyrene-Based Discrete Organoplatinum(II) Double-Metallacycle with Triflate Anions via Hydrogen Bonding and Its Tunable Fluorescence Emission. Journal of the American Chemical Society, 2020, 142, 13689-13694.	13.7	61
51	Giant Concentric Metallosupramolecule with Aggregation-Induced Phosphorescent Emission. Journal of the American Chemical Society, 2020, 142, 14638-14648.	13.7	24
52	Supramolecular and Physically Double-Cross-Linked Network Strategy toward Strong and Tough Elastic Fibers. ACS Macro Letters, 2020, 9, 1655-1661.	4.8	18
53	Rotaxane-Branched Dendrimers with Enhanced Photosensitization. Journal of the American Chemical Society, 2020, 142, 16748-16756.	13.7	68
54	Coordination-Assembled Water-Soluble Anionic Lanthanide Organic Polyhedra for Luminescent Labeling and Magnetic Resonance Imaging. Journal of the American Chemical Society, 2020, 142, 16409-16419.	13.7	83

#	Article	IF	CITATIONS
55	Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence. Journal of the American Chemical Society, 2020, 142, 16849-16860.	13.7	52
56	Self-Assembly of Porphyrin-Based Metallacages into Octahedra. Journal of the American Chemical Society, 2020, 142, 17903-17907.	13.7	37
57	Pillar[5]arene-Containing Metallacycles and Host–Guest Interaction Caused Aggregation-Induced Emission Enhancement Platforms. Journal of the American Chemical Society, 2020, 142, 16930-16934.	13.7	44
58	Amphiphilic Rhomboidal Organoplatinum(II) Metallacycles with Encapsulated Doxorubicin for Synergistic Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 8061-8068.	4.6	10
59	Emissive Metallacycleâ€Crosslinked Supramolecular Networks with Tunable Crosslinking Densities for Bacterial Imaging and Killing. Angewandte Chemie - International Edition, 2020, 59, 15199-15203.	13.8	67
60	Fluorescent Metallacycleâ€Cored Amphiphilic Nanoparticles Formed by βâ€Cyclodextrinâ€Based Host–Guest Interactions towards Cancer Theranostics. Chemistry - A European Journal, 2020, 26, 13031-13038.	3.3	18
61	Self-assembly of chimeric peptides toward molecularly defined hexamers with controlled multivalent ligand presentation. Chemical Communications, 2020, 56, 7128-7131.	4.1	4
62	A cyclic bis[2]catenane metallacage. Nature Communications, 2020, 11, 2727.	12.8	21
63	A precise polyrotaxane synthesizer. Science, 2020, 368, 1247-1253.	12.6	148
64	Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity. Nature Communications, 2020, 11, 3178.	12.8	43
65	Construction of Metallacycleâ€Linked Heteroarm Star Polymers via Orthogonal Postâ€Assembly Polymerization and Their Intriguing Selfâ€Assembly into Largeâ€Area and Regular Nanocubes â€. Chinese Journal of Chemistry, 2020, 38, 1285-1291.	4.9	6
66	Synthesis of Metallopolymers and Direct Visualization of the Single Polymer Chain. Journal of the American Chemical Society, 2020, 142, 6196-6205.	13.7	38
67	Construction of Supramolecular Liquid-Crystalline Metallacycles for Holographic Storage of Colored Images. Journal of the American Chemical Society, 2020, 142, 6285-6294.	13.7	99
68	Spherical Supramolecular Structures Constructed via Chemically Symmetric Perylene Bisimides: Beyond Columnar Assembly. Angewandte Chemie - International Edition, 2020, 59, 18563-18571.	13.8	28
69	Luminescent Metallacycleâ€Cored Liquid Crystals Induced by Metal Coordination. Angewandte Chemie, 2020, 132, 10229-10236.	2.0	12
70	Luminescent Metallacycleâ€Cored Liquid Crystals Induced by Metal Coordination. Angewandte Chemie - International Edition, 2020, 59, 10143-10150.	13.8	49
71	Emissive Platinum(II) Cages with Reverse Fluorescence Resonance Energy Transfer for Multiple Sensing. Journal of the American Chemical Society, 2020, 142, 2592-2600.	13.7	166
72	Capture and Release of Singlet Oxygen in Coordination-Driven Self-Assembled Organoplatinum(II) Metallacycles. Journal of the American Chemical Society, 2020, 142, 2601-2608.	13.7	69

#	Article	IF	Citations
73	Photoinduced interruption of interannular cooperativity for delivery of cationic guests in water. Chemical Communications, 2020, 56, 2987-2990.	4.1	10
74	Intra- and intermolecular self-assembly of a 20-nm-wide supramolecular hexagonal grid. Nature Chemistry, 2020, 12, 468-474.	13.6	88
75	Aggregationâ€Induced Emissive and Circularly Polarized Homogeneous Sulfonoâ€Î³â€AApeptide Foldamers. Advanced Optical Materials, 2020, 8, 1902122.	7.3	24
76	Assembling Shape-Persistent High-Order Sierpiński Triangular Fractals. IScience, 2020, 23, 101064.	4.1	11
77	Daisy Chain Dendrimers: Integrated Mechanically Interlocked Molecules with Stimuli-Induced Dimension Modulation Feature. Journal of the American Chemical Society, 2020, 142, 8473-8482.	13.7	75
78	Self-Assembly of Metallo-Supramolecules under Kinetic or Thermodynamic Control: Characterization of Positional Isomers Using Scanning Tunneling Spectroscopy. Journal of the American Chemical Society, 2020, 142, 9809-9817.	13.7	14
79	Emissive Metallacycleâ€Crosslinked Supramolecular Networks with Tunable Crosslinking Densities for Bacterial Imaging and Killing. Angewandte Chemie, 2020, 132, 15311-15315.	2.0	10
80	Photoswitchable Förster resonance energy transfer (FRET) within a heterometallic Ir–Pt macrocycle. Chemical Communications, 2019, 55, 11119-11122.	4.1	34
81	Melanin-dot–mediated delivery of metallacycle for NIR-II/photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16729-16735.	7.1	141
82	Folding and Assembly of Short \hat{l}_{\pm} , \hat{l}^2 , \hat{l}^3 -Hybrid Peptides: Minor Variations in Sequence and Drastic Differences in Higher-Level Structures. Journal of the American Chemical Society, 2019, 141, 14239-14248.	13.7	18
83	Helical Sulfono- \hat{I}^3 -AApeptides with Aggregation-Induced Emission and Circularly Polarized Luminescence. Journal of the American Chemical Society, 2019, 141, 12697-12706.	13.7	106
84	Combining Synthesis and Self-Assembly in One Pot To Construct Complex 2D Metallo-Supramolecules Using Terpyridine and Pyrylium Salts. Journal of the American Chemical Society, 2019, 141, 13187-13195.	13.7	34
85	Trefoiled Propeller-Shaped Spiral Terpyridyl Metal–Organic Architectures. Inorganic Chemistry, 2019, 58, 11146-11154.	4.0	8
86	A Dynamic Hydrogenâ€Bonded Azoâ€Macrocycle for Precisely Photoâ€Controlled Molecular Encapsulation and Release. Angewandte Chemie - International Edition, 2019, 58, 12519-12523.	13.8	44
87	A Dynamic Hydrogenâ€Bonded Azoâ€Macrocycle for Precisely Photoâ€Controlled Molecular Encapsulation and Release. Angewandte Chemie, 2019, 131, 12649-12653.	2.0	18
88	Self-Healing Heterometallic Supramolecular Polymers Constructed by Hierarchical Assembly of Triply Orthogonal Interactions with Tunable Photophysical Properties. Journal of the American Chemical Society, 2019, 141, 17909-17917.	13.7	80
89	Order from Chaos: Selfâ€Assembly of Nanoprism from a Mixture of Tetratopic Terpyridineâ€Porphyrin Conformers. Chinese Journal of Chemistry, 2019, 37, 1167-1173.	4.9	11
90	Single-molecule level control of host-guest interactions in metallocycle-C60 complexes. Nature Communications, 2019, 10, 4599.	12.8	44

#	Article	lF	CITATIONS
91	Temperature- and Mechanical-Force-Responsive Self-Assembled Rhomboidal Metallacycle. Organometallics, 2019, 38, 4244-4249.	2.3	33
92	Ditopic Chiral Pineno-Fused 2,2′:6′,2″-Terpyridine: Synthesis, Self-Assembly, and Optical Properties. Inorganic Chemistry, 2019, 58, 15039-15044.	4.0	10
93	Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides. ACS Nano, 2019, 13, 13474-13485.	14.6	32
94	Self-assembly of emissive metallocycles with tetraphenylethylene, BODIPY and terpyridine in one system. Supramolecular Chemistry, 2019, 31, 597-605.	1.2	8
95	Facile synthesis of diverse rotaxanes <i>via</i> successive supramolecular transformations. Materials Chemistry Frontiers, 2019, 3, 2397-2402.	5. 9	10
96	Self-Assembled Fluorescent Pt(II) Metallacycles as Artificial Light-Harvesting Systems. Journal of the American Chemical Society, 2019, 141, 14565-14569.	13.7	170
97	Radical-Induced Hierarchical Self-Assembly Involving Supramolecular Coordination Complexes in Both Solution and Solid States. Journal of the American Chemical Society, 2019, 141, 16014-16023.	13.7	62
98	Assembling Pentatopic Terpyridine Ligands with Three Types of Coordination Moieties into a Giant Supramolecular Hexagonal Prism: Synthesis, Self-Assembly, Characterization, and Antimicrobial Study. Journal of the American Chemical Society, 2019, 141, 16108-16116.	13.7	63
99	Switchable organoplatinum metallacycles with high quantum yields and tunable fluorescence wavelengths. Nature Communications, 2019, 10, 4285.	12.8	73
100	Metal–Organic Pt(II) Hexagonal-Prism Macrocycles and Their Photophysical Properties. Inorganic Chemistry, 2019, 58, 13376-13381.	4.0	17
101	A self-assembled Ru–Pt metallacage as a lysosome-targeting photosensitizer for 2-photon photodynamic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20296-20302.	7.1	113
102	Understanding the Effects of Coordination and Self-Assembly on an Emissive Phenothiazine. Journal of the American Chemical Society, 2019, 141, 3717-3722.	13.7	33
103	<i>Endo</i> - and <i>Exo</i> -Functionalized Tetraphenylethylene M ₁₂ L ₂₄ Nanospheres: Fluorescence Emission inside a Confined Space. Journal of the American Chemical Society, 2019, 141, 9673-9679.	13.7	103
104	Solvent-assisted coordination driven assembly of a supramolecular architecture featuring two types of connectivity from discrete nanocages. Chemical Science, 2019, 10, 6661-6665.	7.4	24
105	Synthesis, Self-Assembly and Characterization of Tandem Triblock BPOSS-PDI-X Shape Amphiphiles. Molecules, 2019, 24, 2114.	3 . 8	4
106	Construction and interconversion of anion-coordination-based (â€~aniono') grids and double helicates modulated by counter-cations. Chemical Science, 2019, 10, 6278-6284.	7.4	19
107	Light-Controlled Generation of Singlet Oxygen within a Discrete Dual-Stage Metallacycle for Cancer Therapy. Journal of the American Chemical Society, 2019, 141, 8943-8950.	13.7	136
108	Self-Assembled Amphiphilic Janus Double Metallacycle. Inorganic Chemistry, 2019, 58, 7141-7145.	4.0	13

#	Article	IF	Citations
109	Binary tree-inspired digital dendrimer. Nature Communications, 2019, 10, 1918.	12.8	81
110	Diamondoid Frameworks via Supramolecular Coordination: Structural Characterization, Metallogel Formation, and Adsorption Study. Inorganic Chemistry, 2019, 58, 6268-6275.	4.0	11
111	Orthogonal Halogenâ€Bondingâ€Driven 3D Supramolecular Assembly of Rightâ€Handed Synthetic Helical Peptides. Angewandte Chemie, 2019, 131, 7860-7864.	2.0	6
112	Aqueous Platinum(II)â€Cageâ€Based Lightâ€Harvesting System for Photocatalytic Crossâ€Coupling Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 8954-8958.	2.0	50
113	Porphyrin Nanocageâ€Embedded Singleâ€Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie - International Edition, 2019, 58, 8799-8803.	13.8	62
114	Aqueous Platinum(II)â€Cageâ€Based Lightâ€Harvesting System for Photocatalytic Crossâ€Coupling Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 8862-8866.	13.8	237
115	Designed Conformation and Fluorescence Properties of Self-Assembled Phenazine-Cored Platinum(II) Metallacycles. Journal of the American Chemical Society, 2019, 141, 5535-5543.	13.7	73
116	Construction of a cross-layer linked G-octamer via conformational control: a stable G-quadruplex in H-bond competitive solvents. Chemical Science, 2019, 10, 4192-4199.	7.4	17
117	Orthogonal Halogenâ€Bondingâ€Driven 3D Supramolecular Assembly of Rightâ€Handed Synthetic Helical Peptides. Angewandte Chemie - International Edition, 2019, 58, 7778-7782.	13.8	41
118	Spontaneous Formation of a Cross-Linked Supramolecular Polymer Both in the Solid State and in Solution, Driven by Platinum(II) Metallacycle-Based Host–Guest Interactions. Journal of the American Chemical Society, 2019, 141, 6494-6498.	13.7	58
119	Rotaxane-branched dendrimers with aggregation-induced emission behavior. Organic Chemistry Frontiers, 2019, 6, 1686-1691.	4.5	28
120	Multicomponent Porphyrinâ€Based Tetragonal Prismatic Metallacages and their Photophysical Properties. Israel Journal of Chemistry, 2019, 59, 299-305.	2.3	5
121	Construction of Highly Emissive Pt(II) Metallacycles upon Irradiation. Chinese Journal of Chemistry, 2019, 37, 323-329.	4.9	20
122	Coordination-Driven Self-Assembled Metallacycles Incorporating Pyrene: Fluorescence Mutability, Tunability, and Aromatic Amine Sensing. Journal of the American Chemical Society, 2019, 141, 1757-1765.	13.7	126
123	Supramolecular Transformation of Metallacycle-linked Star Polymers Driven by Simple Phosphine Ligand-Exchange Reaction. Journal of the American Chemical Society, 2019, 141, 583-591.	13.7	46
124	Stepwise Selfâ€Assembly and Dynamic Exchange of Supramolecular Snowflakes. Israel Journal of Chemistry, 2019, 59, 237-247.	2.3	2
125	Porphyrin-functionalized coordination star polymers and their potential applications in photodynamic therapy. Polymer Chemistry, 2019, 10, 6116-6121.	3.9	12
126	Temperature-dependent self-assembly of a purely organic cage in water. Chemical Communications, 2018, 54, 3138-3141.	4.1	34

#	Article	IF	Citations
127	Construction of Porphyrin-Containing Metallacycle with Improved Stability and Activity within Mesoporous Carbon. Journal of the American Chemical Society, 2018, 140, 5049-5052.	13.7	115
128	Post-assembly polymerization of discrete organoplatinum(II) metallacycles via dimerization of coumarin pendants. Dyes and Pigments, 2018, 152, 43-48.	3.7	7
129	Self-assembly of emissive supramolecular rosettes with increasing complexity using multitopic terpyridine ligands. Nature Communications, 2018, 9, 567.	12.8	140
130	Alanine-Based Chiral Metallogels via Supramolecular Coordination Complex Platforms: Metallogelation Induced Chirality Transfer. Journal of the American Chemical Society, 2018, 140, 3257-3263.	13.7	91
131	Hierarchical Self-Assembly of an Alkynylplatinum(ll) Bzimpy-Functionalized Metallacage via Pt···Pt and π–π Interactions. Inorganic Chemistry, 2018, 57, 3516-3520.	4.0	35
132	Coordination-driven self-assembly of a Pt(<scp>iv</scp>) prodrug-conjugated supramolecular hexagon. Chemical Communications, 2018, 54, 731-734.	4.1	45
133	Facile construction of organometallic rotaxane-terminated dendrimers using neutral platinum–acetylides as the main scaffold. Chemical Communications, 2018, 54, 2224-2227.	4.1	32
134	Cross-linked AIE supramolecular polymer gels with multiple stimuli-responsive behaviours constructed by hierarchical self-assembly. Polymer Chemistry, 2018, 9, 2021-2030.	3.9	99
135	Solution and gas phase evidence of anion binding through the secondary bonding interactions of a bidentate bis-antimony(<scp>iii</scp>) anion receptor. Physical Chemistry Chemical Physics, 2018, 20, 46-50.	2.8	25
136	Self-Assembly of Tetrameric and Hexameric Terpyridine-Based Macrocycles Using Cd(II), Zn(II), and Fe(II). Inorganic Chemistry, 2018, 57, 3548-3558.	4.0	21
137	Photoresponsive azo-combretastatin A-4 analogues. European Journal of Medicinal Chemistry, 2018, 143, 1-7.	5.5	44
138	Assembly of Metallacages into Soft Suprastructures with Dimensions of up to Micrometers and the Formation of Composite Materials. Journal of the American Chemical Society, 2018, 140, 17297-17307.	13.7	40
139	Self-Assembly of Supramolecular Fractals from Generation 1 to 5. Journal of the American Chemical Society, 2018, 140, 14087-14096.	13.7	48
140	Self-assembly of polycyclic supramolecules using linear metal-organic ligands. Nature Communications, 2018, 9, 4575.	12.8	49
141	Vertical Assembly of Giant Double―and Tripleâ€Decker Spoked Wheel Supramolecular Structures. Angewandte Chemie, 2018, 130, 14312-14316.	2.0	3
142	Vertical Assembly of Giant Double―and Tripleâ€Decker Spoked Wheel Supramolecular Structures. Angewandte Chemie - International Edition, 2018, 57, 14116-14120.	13.8	37
143	Self-Assembly of Metallacages into Multidimensional Suprastructures with Tunable Emissions. Journal of the American Chemical Society, 2018, 140, 12819-12828.	13.7	63
144	Dual Stimuliâ€Responsive Crossâ€Linked AIE Supramolecular Polymer Constructed through Hierarchical Selfâ€Assembly. Israel Journal of Chemistry, 2018, 58, 1265-1272.	2.3	9

#	Article	IF	Citations
145	Terpyridine-based metallo-organic cages and supramolecular gelation by coordination-driven self-assembly and host–guest interaction. Dalton Transactions, 2018, 47, 14227-14232.	3.3	13
146	Temperature-Responsive Fluorescent Organoplatinum(II) Metallacycles. Journal of the American Chemical Society, 2018, 140, 7723-7729.	13.7	104
147	Fluorescent Metallacage-Core Supramolecular Polymer Gel Formed by Orthogonal Metal Coordination and Host–Guest Interactions. Journal of the American Chemical Society, 2018, 140, 7674-7680.	13.7	242
148	Heterometallic Ru–Pt metallacycle for two-photon photodynamic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5664-5669.	7.1	145
149	Uranyl dication mediated photoswitching of a calix[4]pyrrole-based metal coordination cage. Chemical Communications, 2018, 54, 9422-9425.	4.1	16
150	Stepwise Selfâ€Assembly and Dynamic Exchange of Supramolecular Nanocages Based on Terpridine Building Blocks. Macromolecular Rapid Communications, 2018, 39, e1800404.	3.9	13
151	Photoswitching topology in polymer networks with metal–organic cages as crosslinks. Nature, 2018, 560, 65-69.	27.8	266
152	Supramolecular Kandinsky circles with high antibacterial activity. Nature Communications, 2018, 9, 1815.	12.8	88
153	Diamondoid Supramolecular Coordination Frameworks from Discrete Adamantanoid Platinum(II) Cages. Journal of the American Chemical Society, 2018, 140, 7005-7011.	13.7	44
154	Dual stimuli-responsive rotaxane-branched dendrimers with reversible dimension modulation. Nature Communications, 2018, 9, 3190.	12.8	103
155	Photoresponsive Chiralityâ€Tunable Supramolecular Metallacycles. Macromolecular Rapid Communications, 2018, 39, e1800454.	3.9	10
156	Engineering π–π interactions for enhanced photoluminescent properties: unique discrete dimeric packing of perylene diimides. RSC Advances, 2017, 7, 6530-6537.	3.6	42
157	Synthesis, crystal structure, enhanced photoluminescence properties and fluoride detection ability of S-heterocyclic annulated perylene diimide-polyhedral oligosilsesquioxane dye. Journal of Materials Chemistry C, 2017, 5, 2566-2576.	5.5	36
158	Unusual binding selectivity with non-selective homoditopic pillar[5] arene oxime: serendipitous discovery of a unique approach to heterobinuclear metalation in solution. Chemical Communications, 2017, 53, 2838-2841.	4.1	16
159	Topology Engineering of Proteins <i>in Vivo</i> Using Genetically Encoded, Mechanically Interlocking SpyX Modules for Enhanced Stability. ACS Central Science, 2017, 3, 473-481.	11.3	50
160	A tetraphenylethylene (TPE)-based supra-amphiphilic organoplatinum(<scp>ii</scp>) metallacycle and its self-assembly behaviour. Materials Chemistry Frontiers, 2017, 1, 1823-1828.	5.9	63
161	Self-assembly of a supramolecular hexagram and a supramolecular pentagram. Nature Communications, 2017, 8, 15476.	12.8	53
162	Supersnowflakes: Stepwise Self-Assembly and Dynamic Exchange of Rhombus Star-Shaped Supramolecules. Journal of the American Chemical Society, 2017, 139, 8174-8185.	13.7	76

#	Article	IF	CITATIONS
163	Direct Selfâ€Assembly of a 2D and 3D Star of David. Angewandte Chemie - International Edition, 2017, 56, 5258-5262.	13.8	44
164	Multicomponent Platinum(II) Cages with Tunable Emission and Amino Acid Sensing. Journal of the American Chemical Society, 2017, 139, 5067-5074.	13.7	301
165	Direct Selfâ€Assembly of a 2D and 3D Star of David. Angewandte Chemie, 2017, 129, 5342-5346.	2.0	36
166	Platinum(II)-Based Convex Trigonal-Prismatic Cages via Coordination-Driven Self-Assembly and C ₆₀ Encapsulation. Inorganic Chemistry, 2017, 56, 12498-12504.	4.0	26
167	Construction of Ï€â€Surfaceâ€Metalated Pillar[5]arenes which Bind Anions via Anion–π Interactions. Angewandte Chemie, 2017, 129, 14630-14634.	2.0	10
168	Construction of Ï€â€Surfaceâ€Metalated Pillar[5]arenes which Bind Anions via Anion–π Interactions. Angewandte Chemie - International Edition, 2017, 56, 14438-14442.	13.8	64
169	Combining Orthogonal Chainâ€End Deprotections and Thiol–Maleimide Michael Coupling: Engineering Discrete Oligomers by an Iterative Growth Strategy. Angewandte Chemie - International Edition, 2017, 56, 13612-13617.	13.8	97
170	Constructing Highâ€Generation SierpiÅ"ski Triangles by Molecular Puzzling. Angewandte Chemie - International Edition, 2017, 56, 11450-11455.	13.8	54
171	Constructing Highâ€Generation SierpiÅ"ski Triangles by Molecular Puzzling. Angewandte Chemie, 2017, 129, 11608-11613.	2.0	11
172	Real-Time Monitoring the Dynamics of Coordination-Driven Self-Assembly by Fluorescence-Resonance Energy Transfer. Journal of the American Chemical Society, 2017, 139, 9459-9462.	13.7	175
173	Fluorescent Crossâ€Linked Supramolecular Polymer Constructed by Orthogonal Selfâ€Assembly of Metal–Ligand Coordination and Host–Guest Interaction. Chemistry - A European Journal, 2016, 22, 6881-6890.	3.3	21
174	Self-Assembly of Concentric Hexagons and Hierarchical Self-Assembly of Supramolecular Metal–Organic Nanoribbons at the Solid/Liquid Interface. Journal of the American Chemical Society, 2016, 138, 9258-9268.	13.7	68
175	Immobilizing Tetraphenylethylene into Fused Metallacycles: Shape Effects on Fluorescence Emission. Journal of the American Chemical Society, 2016, 138, 13131-13134.	13.7	80
176	Construction of Alkynylplatinum(II) Bzimpyâ∈Functionalized Metallacycles and Their Hierarchical Selfâ∈Assembly Behavior in Solution Promoted by PtâââPt and Ï∈â∈"Ï∈ Interactions. Chemistry - A Europea Journal, 2016, 22, 14664-14671.	ans.3	32
177	Giant, Hollow 2D Metalloarchitecture: Stepwise Self-Assembly of a Hexagonal Supramolecular Nut. Journal of the American Chemical Society, 2016, 138, 10041-10046.	13.7	74
178	Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks. ACS Central Science, 2016, 2, 48-54.	11.3	76
179	Light-Emitting Superstructures with Anion Effect: Coordination-Driven Self-Assembly of Pure Tetraphenylethylene Metallacycles and Metallacages. Journal of the American Chemical Society, 2016, 138, 4580-4588.	13.7	211
180	Construction of Smart Supramolecular Polymeric Hydrogels Cross-linked by Discrete Organoplatinum(II) Metallacycles via Post-Assembly Polymerization. Journal of the American Chemical Society, 2016, 138, 4927-4937.	13.7	184

#	Article	IF	CITATIONS
181	Vapochromic Behavior of a Chair-Shaped Supramolecular Metallacycle with Ultra-Stability. Journal of the American Chemical Society, 2016, 138, 738-741.	13.7	165
182	3D helical and 2D rhomboidal supramolecules: stepwise self-assembly and dynamic transformation of terpyridine-based metallo-architectures. Chemical Communications, 2016, 52, 9773-9776.	4.1	21
183	Coordinationâ€Driven Selfâ€Assembly of Carbazoleâ€Based Metallodendrimers with Generationâ€Dependent Aggregationâ€Induced Emission Behavior. Chemistry - A European Journal, 2015, 21, 12947-12959.	3.3	45
184	Perylene-Based, Bis(terpyridine)-Ru(II) Complexes: Synthesis, Electrochemical and Photovoltaic Properties. Heterocycles, 2015, 90, 502.	0.7	1
185	Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347, 154-159.	12.6	745
186	From Ring-in-Ring to Sphere-in-Sphere: Self-Assembly of Discrete 2D and 3D Architectures with Increasing Stability. Journal of the American Chemical Society, 2015, 137, 1556-1564.	13.7	144
187	Photocontrolled micellar aggregation of amphiphilic DNA-azobenzene conjugates. Colloids and Surfaces B: Biointerfaces, 2015, 135, 126-132.	5.0	11
188	Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5597-5601.	7.1	128
189	Discrete Stimuliâ€Responsive Multirotaxanes with Supramolecular Cores Constructed through a Modular Approach. Chemistry - A European Journal, 2015, 21, 6286-6294.	3.3	47
190	A Conductive Self-Healing Hybrid Gel Enabled by Metal–Ligand Supramolecule and Nanostructured Conductive Polymer. Nano Letters, 2015, 15, 6276-6281.	9.1	356
191	Hierarchical Self-Assembly of Discrete Organoplatinum(II) Metallacycles with Polysaccharide via Electrostatic Interactions and Their Application for Heparin Detection. Journal of the American Chemical Society, 2015, 137, 11725-11735.	13.7	272
192	Quantitative self-assembly of a purely organic three-dimensional catenane in water. Nature Chemistry, 2015, 7, 1003-1008.	13.6	146
193	A Suite of Tetraphenylethylene-Based Discrete Organoplatinum(II) Metallacycles: Controllable Structure and Stoichiometry, Aggregation-Induced Emission, and Nitroaromatics Sensing. Journal of the American Chemical Society, 2015, 137, 15276-15286.	13.7	260
194	Probing a Hidden World of Molecular Self-Assembly: Concentration-Dependent, Three-Dimensional Supramolecular Interconversions. Journal of the American Chemical Society, 2014, 136, 18149-18155.	13.7	104
195	Self-assembly of giant supramolecular cubes with terpyridine ligands as vertices and metals on edges. Chemical Science, 2014, 5, 1221-1226.	7.4	69
196	Cross-Linked Supramolecular Polymer Gels Constructed from Discrete Multi-pillar[5]arene Metallacycles and Their Multiple Stimuli-Responsive Behavior. Journal of the American Chemical Society, 2014, 136, 8577-8589.	13.7	504
197	Hierarchical self-assembly of a discrete hexagonal metallacycle into the ordered nanofibers and stimuli-responsive supramolecular gels. Chemical Communications, 2014, 50, 4231.	4.1	59
198	The construction of complex multicomponent supramolecular systems via the combination of orthogonal self-assembly and the self-sorting approach. Chemical Science, 2014, 5, 4554-4560.	7.4	91

#	Article	IF	Citations
199	Hexagon Wreaths: Self-Assembly of Discrete Supramolecular Fractal Architectures Using Multitopic Terpyridine Ligands. Journal of the American Chemical Society, 2014, 136, 6664-6671.	13.7	111
200	Supramolecular self-assembly and photovoltaic property of soluble fluorogallium phthalocyanine. RSC Advances, 2014, 4, 29485-29492.	3.6	3
201	A study of the spiropyran–merocyanine system using ion mobility-mass spectrometry: experimental support for the cisoid conformation. Chemical Communications, 2014, 50, 3424-3426.	4.1	19
202	One Ligand in Dual Roles: Selfâ€Assembly of a Bisâ€Rhomboidalâ€Shaped, Threeâ€Dimensional Molecular Wheel. Chemistry - A European Journal, 2014, 20, 13094-13098.	3.3	21
203	Tuning "thiol-ene―reactions toward controlled symmetry breaking in polyhedral oligomeric silsesquioxanes. Chemical Science, 2014, 5, 1046-1053.	7.4	61
204	From Trigonal Bipyramidal to Platonic Solids: Self-Assembly and Self-Sorting Study of Terpyridine-Based 3D Architectures. Journal of the American Chemical Society, 2014, 136, 10499-10507.	13.7	106
205	Donor–acceptor–donor polymers utilizing pyrimidine-based acceptors. Reactive and Functional Polymers, 2014, 83, 113-122.	4.1	2
206	Unexpected Self-Assembly of Chiral Triangles from 90° Chiral Di-Pt(II) Acceptors. Organic Letters, 2014, 16, 664-667.	4.6	36
207	Smart Stimuli-Responsive Spherical Nanostructures Constructed from Supramolecular Metallodendrimers via Hierarchical Self-Assembly. Journal of the American Chemical Society, 2014, 136, 5993-6001.	13.7	120
208	Protein adsorption on thermoplastic elastomeric surfaces: A quantitative mass spectrometry study. International Journal of Mass Spectrometry, 2013, 354-355, 391-397.	1.5	8
209	Selfâ€Assembly and Characterization of 3D Metallamacrocycles: A Study of Supramolecular Constitutional Isomers. European Journal of Inorganic Chemistry, 2013, 2013, 2492-2497.	2.0	17
210	Selfâ€Assembly of a Supramolecular, Threeâ€Dimensional, Spoked, Bicycleâ€like Wheel. Angewandte Chemie - International Edition, 2013, 52, 7728-7731.	13.8	81
211	Dielectric Relaxation and Rheological Behavior of Supramolecular Polymeric Liquid. Macromolecules, 2013, 46, 3160-3166.	4.8	56
212	Peryleneâ€Based Bisâ€, Tetrakisâ€, and Hexakis(terpyridine) Ligands and Their Ruthenium(II)–Bis(terpyridine) Complexes: Synthesis and Photophysical Properties. European Journal of Organic Chemistry, 2013, 2013, 3640-3644.	2.4	18
213	Direct evidence of phospholipids in gecko footprints and spatula–substrate contact interface detected using surface-sensitive spectroscopy. Journal of the Royal Society Interface, 2012, 9, 657-664.	3.4	61
214	Interfacing Multistage Mass Spectrometry with Liquid Chromatography or Ion Mobility Separation for Synthetic Polymer Analysis. European Journal of Mass Spectrometry, 2012, 18, 113-137.	1.0	18
215	A zwitterionic squaraine dye with a large Stokes shift for in vivo and site-selective protein sensing. Chemical Communications, 2012, 48, 11313.	4.1	38
216	Shape-persistent, ruthenium(ii)- and iron(ii)-bisterpyridine metallodendrimers: synthesis, traveling-wave ion-mobility mass spectrometry, and photophysical properties. New Journal of Chemistry, 2012, 36, 484.	2.8	18

#	Article	IF	CITATIONS
217	Stable, trinuclear Zn(ii)- and Cd(ii)-metallocycles: TWIM-MS, photophysical properties, and nanofiber formation. Dalton Transactions, 2012, 41, 11573.	3.3	39
218	Probing Surface Concentration of Cyclic/Linear Blend Films Using Surface Layer MALDI-TOF Mass Spectrometry. ACS Macro Letters, 2012, 1, 1024-1027.	4.8	28
219	From supramolecular triangle to heteroleptic rhombus: a simple bridge can make a difference. Chemical Communications, 2012, 48, 9873.	4.1	45
220	Dondorff Rings: Synthesis, Isolation, and Properties of 60°â€Directed Bisterpyridineâ€Based Folded Tetramers. Chemistry - A European Journal, 2012, 18, 11569-11572.	3.3	30
221	Stoichiometric Self-Assembly of Isomeric, Shape-Persistent, Supramacromolecular Bowtie and Butterfly Structures. Journal of the American Chemical Society, 2012, 134, 7672-7675.	13.7	100
222	Giant Molecular Shape Amphiphiles Based on Polystyrene–Hydrophilic [60]Fullerene Conjugates: Click Synthesis, Solution Self-Assembly, and Phase Behavior. Journal of the American Chemical Society, 2012, 134, 7780-7787.	13.7	138
223	Sterically congested, hexameric tetrakispyridinyl-PdII/CdII-metallomacrocycles: self-assembly and structural characterization. Chemical Communications, 2011, 47, 4658.	4.1	31
224	Formation of linear supramolecular polymers that is based on host–guest assembly in water. Chemical Communications, 2011, 47, 8883.	4.1	44
225	Potent sirtuin inhibition bestowed by l-2-amino-7-carboxamidoheptanoic acid (l-ACAH), a NÎμ-acetyl-lysine analog. MedChemComm, 2011, 2, 291.	3.4	19
226	Anionic Synthesis of Mono- and Heterotelechelic Polystyrenes via Thiol–Ene "Click―Chemistry and Hydrosilylation. Macromolecules, 2011, 44, 3328-3337.	4.8	40
227	Synthesis of Shape Amphiphiles Based on Functional Polyhedral Oligomeric Silsesquioxane End-Capped Poly(<scp>I</scp> -Lactide) with Diverse Head Surface Chemistry. Macromolecules, 2011, 44, 2589-2596.	4.8	98
228	Separation and Characterization of Metallosupramolecular Libraries by Ion Mobility Mass Spectrometry. Analytical Chemistry, 2011, 83, 6667-6674.	6.5	59
229	Stoichiometric Self-Assembly of Shape-Persistent 2D Complexes: A Facile Route to a Symmetric Supramacromolecular Spoked Wheel. Journal of the American Chemical Society, 2011, 133, 11450-11453.	13.7	147
230	Gradient Tandem Mass Spectrometry Interfaced with Ion Mobility Separation for the Characterization of Supramolecular Architectures. Analytical Chemistry, 2011, 83, 1284-1290.	6.5	90
231	Antifouling Poly(\hat{l}^2 -peptoid)s. Biomacromolecules, 2011, 12, 2573-2582.	5.4	83
232	Breaking Symmetry toward Nonspherical Janus Particles Based on Polyhedral Oligomeric Silsesquioxanes: Molecular Design, "Click―Synthesis, and Hierarchical Structure. Journal of the American Chemical Society, 2011, 133, 10712-10715.	13.7	148
233	Design, Synthesis, and Traveling Wave Ion Mobility Mass Spectrometry Characterization of Iron(II)– and Ruthenium(II)–Terpyridine Metallomacrocycles. Journal of the American Chemical Society, 2011, 133, 11967-11976.	13.7	158
234	Top-Down Multidimensional Mass Spectrometry Methods for Synthetic Polymer Analysis. Macromolecules, 2011, 44, 4555-4564.	4.8	65

#	Article	IF	CITATIONS
235	Improved synthesis of fullerynes by Fisher esterification for modular and efficient construction of fullerene polymers with high fullerene functionality. Polymer, 2011, 52, 4221-4226.	3.8	20
236	A mechanism-based potent sirtuin inhibitor containing $\hat{Nl\mu}$ -thiocarbamoyl-lysine (TuAcK). Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4753-4757.	2.2	22
237	Dendronâ€Functionalized Bis(terpyridine)–Iron(II) or –Cadmium(II) Metallomacrocycles: Synthesis, Travelingâ€Wave Ionâ€Mobility Mass Spectrometry, and Photophysical Properties. Chemistry - A European Journal, 2011, 17, 4830-4838.	3.3	35
238	Towards Larger Polygonal Architectures: Synthesis and Characterization of Iron(II)– and Ruthenium(II)–Bis(terpyridine) Metallomacrocycles. Chemistry - A European Journal, 2011, 17, 7750-7754.	3.3	50
239	Hexameric Palladium(II) Terpyridyl Metallomacrocycles: Assembly with 4,4′â€Bipyridine and Characterization by TWIM Mass Spectrometry. Angewandte Chemie - International Edition, 2010, 49, 6539-6544.	13.8	70
240	Fast in situ copolymerization of PET/PEN blends by ultrasonically-aided extrusion. Polymer, 2010, 51, 1071-1081.	3.8	30
241	Synthesis, Self-assembly, and Crystal Structure of a Shape-Persistent Polyhedral-Oligosilsesquioxane-Nanoparticle-Tethered Perylene Diimide. Journal of Physical Chemistry B, 2010, 114, 4802-4810.	2.6	83
242	A Giant Surfactant of Polystyreneâ [^] (Carboxylic Acid-Functionalized Polyhedral Oligomeric) Tj ETQq0 0 0 rgBT /Ov the American Chemical Society, 2010, 132, 16741-16744.	verlock 10 ¹	Tf 50 467 Td 235
243	Host–guest assembly of squaraine dye in cucurbit[8]uril: its implication in fluorescent probe for mercury ions. Chemical Communications, 2010, 46, 4073.	4.1	59
244	Self-Assembly and Traveling Wave Ion Mobility Mass Spectrometry Analysis of Hexacadmium Macrocycles. Journal of the American Chemical Society, 2009, 131, 16395-16397.	13.7	151
245	Metalloâ€Supramolecular Octahedral Cages with Three Types of Chirality towards Spontaneous Resolution. Angewandte Chemie, 0, , .	2.0	5