Javier Jarazo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2228049/publications.pdf Version: 2024-02-01

INVIED INDAZO

#	Article	IF	CITATIONS
1	Parkinson's Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by <scp>2â€Hydroxypropylâ€Î²â€Cyclodextrin</scp> Treatment. Movement Disorders, 2022, 37, 80-94.	3.9	37
2	Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia, 2022, 70, 1267-1288.	4.9	51
3	Generation of isogenic control DJ-1-delP GC13 for the genetic Parkinsonâ€~s disease-patient derived iPSC line DJ-1-delP (LCSBi008-A-1). Stem Cell Research, 2022, 62, 102815.	0.7	0
4	Mitochondrial and Clearance Impairment in p. <scp>D620N VPS35</scp> Patientâ€Đerived Neurons. Movement Disorders, 2021, 36, 704-715.	3.9	32
5	PINK1 deficiency impairs adult neurogenesis of dopaminergic neurons. Scientific Reports, 2021, 11, 6617.	3.3	21
6	The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1. Cell Reports, 2021, 37, 109864.	6.4	20
7	Passive controlled flow for Parkinson's disease neuronal cell culture in 3D microfluidic devices. Organs-on-a-Chip, 2020, 2, 100005.	3.2	7
8	Impaired mitochondrial–endoplasmic reticulum interaction and mitophagy in Miro1-mutant neurons in Parkinson's disease. Human Molecular Genetics, 2020, 29, 1353-1364.	2.9	37
9	Automated high-throughput high-content autophagy and mitophagy analysis platform. Scientific Reports, 2019, 9, 9455.	3.3	13
10	Impaired serine metabolism complements LRRK2-G2019S pathogenicity in PD patients. Parkinsonism and Related Disorders, 2019, 67, 48-55.	2.2	13
11	Guidelines for Fluorescent Guided Biallelic HDR Targeting Selection With PiggyBac System Removal for Gene Editing. Frontiers in Genetics, 2019, 10, 190.	2.3	10
12	Neural Stem Cells of Parkinson's Disease Patients Exhibit Aberrant Mitochondrial Morphology and Functionality. Stem Cell Reports, 2019, 12, 878-889.	4.8	68
13	Automated microfluidic cell culture of stem cell derived dopaminergic neurons. Scientific Reports, 2019, 9, 1796.	3.3	81
14	Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis. Acta Neuropathologica Communications, 2019, 7, 222.	5.2	49
15	3D Cultures of Parkinson's Diseaseâ€Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing. Advanced Science, 2019, 6, 1800927.	11.2	92
16	Quality Control Strategy for CRISPR-Cas9-Based Gene Editing Complicated by a Pseudogene. Frontiers in Genetics, 2019, 10, 1297.	2.3	5
17	Derivation of Human Midbrain-Specific Organoids from Neuroepithelial StemÂCells. Stem Cell Reports, 2017, 8, 1144-1154.	4.8	321
18	FACS-Assisted CRISPR-Cas9 Genome Editing Facilitates Parkinson's Disease Modeling. Stem Cell Reports, 2017, 9, 1423-1431.	4.8	77

JAVIER JARAZO

#	Article	IF	CITATIONS
19	CRISPR/Cas9 and piggyBac-mediated footprint-free LRRK2-G2019S knock-in reveals neuronal complexity phenotypes and α-Synuclein modulation in dopaminergic neurons. Stem Cell Research, 2017, 24, 44-50.	0.7	60
20	Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse. Theriogenology, 2016, 86, 1081-1091.	2.1	6
21	Tiger, Bengal and Domestic Cat Embryos Produced by Homospecific and Interspecific Zonaâ€Free Nuclear Transfer. Reproduction in Domestic Animals, 2015, 50, 849-857.	1.4	16
22	State of the art: Stem cells in equine regenerative medicine. Equine Veterinary Journal, 2015, 47, 145-154.	1.7	31
23	41 EFFICIENT STRATEGY FOR INTERSPECIFIC CLONING IN FELIDS. Reproduction, Fertility and Development, 2014, 26, 134.	0.4	1
24	Equine Cloning: In Vitro and In Vivo Development of Aggregated Embryos1. Biology of Reproduction, 2012, 87, 15, 1-9.	2.7	35
25	A unique method to produce transgenic embryos in ovine, porcine, feline, bovine and equine species. Reproduction, Fertility and Development, 2008, 20, 741.	0.4	45
26	307 TRANSGENESIS MEDIATED BY INTRACYTOPLASMIC SPERM INJECTION (ICSI) ASSISTED BY CHEMICAL ACTIVATION IN DIFFERENT DOMESTIC SPECIES. Reproduction, Fertility and Development, 2008, 20, 233.	0.4	0