Pablo Bifani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2227721/publications.pdf

Version: 2024-02-01

65 6,431 34 62 papers citations h-index g-index

66 66 6330
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	inPhocus: Current State and Challenges of Phage Research in Singapore. Phage, 2022, 3, 6-11.	0.8	O
2	Improving in vitro continuous cultivation of Plasmodium cynomolgi, a model for P. vivax. Parasitology International, 2022, 89, 102589.	0.6	7
3	Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro. Scientific Reports, 2021, 11, 19905.	1.6	17
4	Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nature Communications, 2019, 10, 3635.	5.8	39
5	Hepatic spheroids used as an in vitro model to study malaria relapse. Biomaterials, 2019, 216, 119221.	5.7	48
6	Imidazolopiperazines Kill both Rings and Dormant Rings in Wild-Type and K13 Artemisinin-Resistant Plasmodium falciparum In Vitro. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	12
7	The addition of avibactam renders piperacillin an effective treatment for Mycobacterium abscessus infection in an in vivo model. Antimicrobial Resistance and Infection Control, 2018, 7, 151.	1.5	11
8	Strict tropism for CD71+/CD234+ human reticulocytes limits the zoonotic potential of Plasmodium cynomolgi. Blood, 2017, 130, 1357-1363.	0.6	27
9	Genomic Epidemiology of Lineage 4 Mycobacterium tuberculosis Subpopulations in New York City and New Jersey, 1999–2009. Open Forum Infectious Diseases, 2016, 3, .	0.4	O
10	Mutations in the Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL) Confer Multidrug Resistance. MBio, 2016, 7, .	1.8	49
11	Structure and mapping of spontaneous mutational sites of PyrR from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2016, 471, 409-415.	1.0	5
12	UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nature Microbiology, 2016, 1, 16166.	5.9	102
13	Molecular evidence suggestive of intrauterine transmission of Neisseria meningitidis serogroup A from mother to infant. Journal of Pediatric Infectious Diseases, 2015, 02, 045-050.	0.1	7
14	Mutations in Genes for the F ₄₂₀ Biosynthetic Pathway and a Nitroreductase Enzyme Are the Primary Resistance Determinants in Spontaneous <i>In Vitro</i> -Selected PA-824-Resistant Mutants of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 5316-5323.	1.4	109
15	Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia. Infection, Genetics and Evolution, 2015, 32, 165-177.	1.0	67
16	Increased Vancomycin Susceptibility in Mycobacteria: a New Approach To Identify Synergistic Activity against Multidrug-Resistant Mycobacteria. Antimicrobial Agents and Chemotherapy, 2015, 59, 5057-5060.	1.4	49
17	Structural basis of mapping the spontaneous mutations with 5-flurouracil in uracil phosphoribosyltransferase from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2015, 467, 577-582.	1.0	7
18	Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nature Medicine, 2013, 19, 1157-1160.	15.2	509

#	Article	IF	Citations
19	Design, Synthesis, and Biological Evaluation of Indole-2-carboxamides: A Promising Class of Antituberculosis Agents. Journal of Medicinal Chemistry, 2013, 56, 8849-8859.	2.9	85
20	Indolcarboxamide Is a Preclinical Candidate for Treating Multidrug-Resistant Tuberculosis. Science Translational Medicine, 2013, 5, 214ra168.	5.8	134
21	para-Aminosalicylic Acid Is a Prodrug Targeting Dihydrofolate Reductase in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2013, 288, 23447-23456.	1.6	158
22	Exploring the Mode of Action of Bioactive Compounds by Microfluidic Transcriptional Profiling in Mycobacteria. PLoS ONE, 2013, 8, e69191.	1.1	14
23	Epidemiologic Consequences of Microvariation in Mycobacterium tuberculosis. Journal of Infectious Diseases, 2012, 205, 964-974.	1.9	21
24	A High-Throughput Screen To Identify Inhibitors of ATP Homeostasis in Non-replicating <i>Mycobacterium tuberculosis</i> ACS Chemical Biology, 2012, 7, 1190-1197.	1.6	123
25	CC8 MRSA Strains Harboring SCCmec Type IVc are Predominant in Colombian Hospitals. PLoS ONE, 2012, 7, e38576.	1.1	55
26	Systematic Analysis of Pyrazinamide-Resistant Spontaneous Mutants and Clinical Isolates of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 5186-5193.	1.4	85
27	Phylogeny of Mycobacterium tuberculosis Beijing Strains Constructed from Polymorphisms in Genes Involved in DNA Replication, Recombination and Repair. PLoS ONE, 2011, 6, e16020.	1.1	69
28	Experimental Tuberculosis in the Wistar Rat: A Model for Protective Immunity and Control of Infection. PLoS ONE, 2011, 6, e18632.	1.1	39
29	BCG Induces Protection against Mycobacterium tuberculosis Infection in the Wistar Rat Model. PLoS ONE, 2011, 6, e28082.	1.1	14
30	Mycobacterium tuberculosis infection induces hypoxic lung lesions in the rat. Tuberculosis, 2011, 91, 339-341.	0.8	19
31	T Cell Monitoring of Chemotherapy in Experimental Rat Tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 3677-3683.	1.4	8
32	Biochemical and immunological characterization of a cpn60.1 knockout mutant of Mycobacterium bovis BCG. Microbiology (United Kingdom), 2011, 157, 1205-1219.	0.7	32
33	A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110 for detection of Mycobacterium tuberculosis complex. Microbiological Research, 2010, 165, 211-220.	2.5	135
34	A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nature Communications, 2010, 1, 57.	5.8	250
35	Molecular Genetics of <i>para</i> -Aminosalicylic Acid Resistance in Clinical Isolates and Spontaneous Mutants of <i>Mycobacterium tuberculosis</i> Antimicrobial Agents and Chemotherapy, 2009, 53, 2100-2109.	1.4	103
36	Variable-number tandem repeat 3690 polymorphism in Indian clinical isolates of Mycobacterium tuberculosis and its influence on transcription. Journal of Medical Microbiology, 2009, 58, 798-805.	0.7	20

#	Article	IF	CITATIONS
37	Synthetic EthR inhibitors boost antituberculous activity of ethionamide. Nature Medicine, 2009, 15, 537-544.	15.2	162
38	Genotyping of Mycobacterium tuberculosis Clinical Isolates Using IS6110-Based Restriction Fragment Length Polymorphism Analysis. Methods in Molecular Biology, 2009, 551, 173-188.	0.4	7
39	Detecting the molecular scars of evolution in the Mycobacterium tuberculosis complex by analyzing interrupted coding sequences. BMC Evolutionary Biology, 2008, 8, 78.	3.2	19
40	IS1096-mediated DNA rearrangements play a key role in genome evolution of Mycobacterium smegmatis. Tuberculosis, 2008, 88, 399-409.	0.8	16
41	Functional Role of the PE Domain and Immunogenicity of the <i>Mycobacterium tuberculosis</i> Triacylglycerol Hydrolase LipY. Infection and Immunity, 2008, 76, 127-140.	1.0	127
42	Standardised PCR-based molecular epidemiology of tuberculosis. European Respiratory Journal, 2008, 31, 1077-1084.	3.1	21
43	The Evolution of Drug Resistance in <i>Mycobacterium tuberculosis:</i> From a Mono–Rifampinâ€Resistant Cluster into Increasingly Multidrugâ€Resistant Variants in an HIVâ€Seropositive Population. Journal of Infectious Diseases, 2008, 198, 90-94.	1.9	25
44	Molecular and Epidemiological Evidence for Spread of Multiresistant Methicillin-Susceptible <i>Staphylococcus aureus</i> Strains in Hospitals. Antimicrobial Agents and Chemotherapy, 2007, 51, 4342-4350.	1.4	51
45	La PCR en temps réel : principe et application en infectiologie. Antibiotiques, 2007, 9, 205-211.	0.1	0
46	Molecular Epidemiology of Tuberculosis: Current Insights. Clinical Microbiology Reviews, 2006, 19, 658-685.	5.7	325
47	Proposal for Standardization of Optimized Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 2006, 44, 4498-4510.	1.8	1,181
48	Identification and structural characterization of an unusual mycobacterial monomeromycolyl-diacylglycerol. Molecular Microbiology, 2005, 57, 1113-1126.	1.2	55
49	Targeted Hybridization of IS 6110 Fingerprints Identifies the W-Beijing Mycobacterium tuberculosis Strains among Clinical Isolates. Journal of Clinical Microbiology, 2005, 43, 2148-2154.	1.8	16
50	Persistence of a Highly Resistant Strain of Tuberculosis in New York City during 1990–1999. Journal of Infectious Diseases, 2003, 188, 356-363.	1.9	61
51	Mutations in Putative Mutator Genes of <i>Mycobacterium tuberculosis </i> Family. Emerging Infectious Diseases, 2003, 9, 838-845.	2.0	240
52	Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10759-10764.	3.3	110
53	Characterization of a putative α-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochemical Journal, 2002, 363, 437.	1.7	65
54	Characterization of a putative \hat{l}_{\pm} -mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochemical Journal, 2002, 363, 437-447.	1.7	84

#	Article	IF	CITATIONS
55	Molecular Epidemiology of Multidrug-Resistant Tuberculosis, New York City, 1995–1997. Emerging Infectious Diseases, 2002, 8, 1230-1238.	2.0	35
56	Worldwide Occurrence of Beijing/W Strains of <i>Mycobacterium tuberculosis </i> A Systematic Review. Emerging Infectious Diseases, 2002, 8, 843-849.	2.0	529
57	Enhanced bacterial virulence through exploitation of host glycosaminoglycans. Molecular Microbiology, 2002, 43, 1379-1386.	1.2	75
58	Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends in Microbiology, 2002, 10, 45-52.	3.5	452
59	Molecular Identification of Streptomycin Monoresistant <i>Mycobacterium tuberculosis</i> Related to Multidrug-Resistant W Strain. Emerging Infectious Diseases, 2001, 7, 842-848.	2.0	31
60	Characterization of the Secreted MPT53 Antigen of Mycobacterium tuberculosis. Infection and Immunity, 2001, 69, 5936-5939.	1.0	12
61	The nature and consequence of genetic variability within Mycobacterium tuberculosis. Journal of Clinical Investigation, 2001, 107, 533-537.	3.9	73
62	MTSA-10, the Product of the Rv3874 Gene of Mycobacterium tuberculosis, Elicits Tuberculosis-Specific, Delayed-Type Hypersensitivity in Guinea Pigs. Infection and Immunity, 2000, 68, 990-993.	1.0	62
63	Use of Spoligotype Analysis to Detect Laboratory Cross-Contamination. Infection Control and Hospital Epidemiology, 2000, 21, 525-527.	1.0	17
64	Identification of a W Variant Outbreak of <emph type="ITAL">Mycobacterium tuberculosis</emph> via Population-Based Molecular Epidemiology. JAMA - Journal of the American Medical Association, 1999, 282, 2321.	3.8	142
65	Nosocomial Transmission of a Drug-Sensitive W-Variant Mycobacterium tuberculosis Strain among Patients with Acquired Immunodeficiency Syndrome in Tennessee. Infection Control and Hospital Epidemiology, 1998, 19, 635-639.	1.0	9