Santanu Mukherjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2227709/publications.pdf

Version: 2024-02-01

117453 76769 5,759 74 34 74 citations g-index h-index papers 91 91 91 4898 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Aminoalkyl-organo-silane treated sand for the adsorptive removal of arsenic from the groundwater: Immobilizing the mobilized geogenic contaminants. Journal of Hazardous Materials, 2022, 425, 127916.	6.5	3
2	Iridium atalyzed Enantioselective and Chemodivergent Allenylic Alkylation of Vinyl Azides for the Synthesis of αâ€Allenylic Amides and Ketones**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
3	Enantioselective Total Synthesis of [3]â€Ladderanol through Lateâ€Stage Organocatalytic Desymmetrization**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
4	A perspective on biochar for repairing damages in the soil–plant system caused by climate change-driven extreme weather events. Biochar, 2022, 4, 1.	6.2	46
5	Dissipation kinetics, residue modeling and human intake of endosulfan applied to okra (Abelmoschus) Tj $$ ETQq 1 1	03784314	rgBT /Overl
6	A chronicle of SARS-CoV-2: Seasonality, environmental fate, transport, inactivation, and antiviral drug resistance. Journal of Hazardous Materials, 2021, 405, 124043.	6.5	76
7	Hexametaphosphate cross-linked chitosan beads for the eco-efficient removal of organic dyes: Tackling water quality. Journal of Environmental Management, 2021, 280, 111680.	3.8	27
8	Iridium-catalyzed enantioselective olefinic C(sp ²)–H allylic alkylation. Chemical Science, 2021, 12, 3070-3075.	3.7	16
9	Catalytic Enantioselective Desymmetrizing Fischer Indolization through Dynamic Kinetic Resolution. Angewandte Chemie - International Edition, 2021, 60, 9086-9092.	7.2	16
10	Catalytic Enantioselective Desymmetrizing Fischer Indolization through Dynamic Kinetic Resolution. Angewandte Chemie, 2021, 133, 9168-9174.	1.6	3
11	Efficacy of agricultural waste derived biochar for arsenic removal: Tackling water quality in the Indo-Gangetic plain. Journal of Environmental Management, 2021, 281, 111814.	3 . 8	45
12	Iridium-Catalyzed Asymmetric Allylic Alkylation of Deconjugated Butyrolactams. Organic Letters, 2021, 23, 3021-3026.	2.4	11
13	Cycling of black carbon and black nitrogen in the hydro-geosphere: Insights on the paradigm, pathway, and processes. Science of the Total Environment, 2021, 770, 144711.	3.9	15
14	Mega festivals like MahaKumbh, a largest mass congregation, facilitated the transmission of SARS-CoV-2 to humans and endangered animals via contaminated water. International Journal of Hygiene and Environmental Health, 2021, 237, 113836.	2.1	9
15	Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management. Environmental Research, 2021, 200, 111758.	3.7	39
16	Biopurification of dairy farm wastewater through hybrid constructed wetland system: Groundwater quality and health implications. Environmental Research, 2021, 200, 111426.	3.7	14
17	Buckeye Rot of Tomato in India: Present Status, Challenges, and Future Research Perspectives. Plant Disease, 2021, , .	0.7	2
18	Metal removal, partitioning and phase distributions in the wastewater and sludge: Performance evaluation of conventional, upflow anaerobic sludge blanket and downflow hanging sponge treatment systems. Journal of Cleaner Production, 2020, 249, 119426.	4.6	25

#	Article	IF	CITATIONS
19	Reappraisal review on geopolymer: A new era of aluminosilicate binder for metal immobilization. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100345.	1.7	13
20	Deconjugated butenolide: a versatile building block for asymmetric catalysis. Chemical Society Reviews, 2020, 49, 6755-6788.	18.7	42
21	Iridium-Catalyzed Enantioselective î±-Allylic Alkylation of Amides Using Vinyl Azide as Amide Enolate Surrogate. Organic Letters, 2020, 22, 7752-7756.	2.4	19
22	Future liasing of the lockdown during COVID-19 pandemic: The dawn is expected at hand from the darkest hour. Groundwater for Sustainable Development, 2020, 11, 100433.	2.3	12
23	Low-cost bio-based sustainable removal of lead and cadmium using a polyphenolic bioactive Indian curry leaf (Murraya koengii) powder. International Journal of Hygiene and Environmental Health, 2020, 226, 113471.	2.1	37
24	Biomedical application, drug delivery and metabolic pathway of antiviral nanotherapeutics for combating viral pandemic: A review. Environmental Research, 2020, 191, 110119.	3.7	28
25	Noncovalent Catalysis for Enantioselective Direct Aldol Reaction of 3â€Acetylcoumarins to Pyrazoleâ€4,5â€diones. Asian Journal of Organic Chemistry, 2019, 8, 1045-1048.	1.3	8
26	Sustainable removal of pernicious arsenic and cadmium by a novel composite of MnO2 impregnated alginate beads: A cost-effective approach for wastewater treatment. Journal of Environmental Management, 2019, 234, 8-20.	3.8	59
27	Enantioselective Direct Vinylogous Allylic Alkylation of 4-Methylquinolones under Iridium Catalysis. Organic Letters, 2019, 21, 5315-5320.	2.4	14
28	Enantioselective $[4+2]$ -Annulation of Azlactones with Copper-Allenylidenes under Cooperative Catalysis: Synthesis of \hat{l} ±-Quaternary \hat{l} ±-Acylaminoamides. Organic Letters, 2019, 21, 3361-3366.	2.4	49
29	Catalytic enantioselective Michael addition of deconjugated butyrolactams to maleimides. Tetrahedron, 2019, 75, 3292-3298.	1.0	11
30	A Catalytic Enantioselective Iodocyclization Route to Dihydrooxazines. Organic Letters, 2018, 20, 1300-1303.	2.4	28
31	Picosecond Electron Transfer from Quantum Dots Enables a General and Efficient Aerobic Oxidation of Boronic Acids. ACS Catalysis, 2018, 8, 5206-5211.	5.5	35
32	Catalytic Enantioselective C–C Bond-Forming Reactions of Deconjugated Butyrolactams: Michael Addition to α,β-Unsaturated Aldehydes and Ketones. Journal of Organic Chemistry, 2018, 83, 12071-12085.	1.7	10
33	Efficient Photosynthesis of Organics from Aqueous Bicarbonate lons by Quantum Dots Using Visible Light. ACS Energy Letters, 2018, 3, 1508-1514.	8.8	26
34	Direct Catalytic Enantioselective Vinylogous Aldol Reaction of Allyl Ketones to Pyrazole-4,5-diones. Journal of Organic Chemistry, 2018, 83, 10871-10880.	1.7	23
35	Iridium-catalyzed enantioselective direct vinylogous allylic alkylation of coumarins. Chemical Science, 2018, 9, 5767-5772.	3.7	32
36	Catalytic Enantioselective Synthesis of 3,4-Unsubstituted Thiochromenes through Sulfa-Michael/Julia–Kocienski Olefination Cascade Reaction. Journal of Organic Chemistry, 2017, 82, 4851-4858.	1.7	35

#	Article	IF	Citations
37	Catalytic Enantioselective Vinylogous Allylic Alkylation of Coumarins. Organic Letters, 2017, 19, 4944-4947.	2.4	27
38	"On water―catalytic enantioselective sulfenylation of deconjugated butyrolactams. Organic and Biomolecular Chemistry, 2017, 15, 6921-6925.	1.5	31
39	Nitro-enabled catalytic enantioselective formal umpolung alkenylation of \hat{l}^2 -ketoesters. Chemical Science, 2017, 8, 6686-6690.	3.7	16
40	Sorption–desorption behaviour of bentazone, boscalid and pyrimethanil in biochar and digestate based soil mixtures for biopurification systems. Science of the Total Environment, 2016, 559, 63-73.	3.9	52
41	Enantioselective Formal C(sp ²)â^H Vinylation. Chemistry - A European Journal, 2016, 22, 14912-14919.	1.7	28
42	Catalytic enantioselective cascade Michael/cyclization reaction of 3-isothiocyanato oxindoles with exocyclic $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones en route to 3,2 \hat{a} \in 2-pyrrolidinyl bispirooxindoles. Organic and Biomolecular Chemistry, 2016, 14, 10175-10179.	1.5	43
43	Enantioselective dearomatization of isoquinolines by anion-binding catalysis en route to cyclic \hat{l}_{\pm} -aminophosphonates. Chemical Science, 2016, 7, 6940-6945.	3.7	67
44	Catalytic Enantioselective Desymmetrization of Norbornenoquinones via C(sp2)–H Alkylation. Organic Letters, 2016, 18, 6160-6163.	2.4	29
45	Microbial respiration of biochar- and digestate-based mixtures. Biology and Fertility of Soils, 2016, 52, 151-164.	2.3	39
46	Field scale boscalid residues and dissipation half-life estimation in a sandy soil. Chemosphere, 2016, 145, 163-173.	4.2	27
47	Catalytic asymmetric formal \hat{I}^3 -allylation of deconjugated butenolides. Organic and Biomolecular Chemistry, 2016, 14, 5659-5664.	1.5	45
48	Organocatalytic Enantioselective Formal C(sp ²)â€"H Alkylation. Journal of the American Chemical Society, 2015, 137, 130-133.	6.6	100
49	Catalytic Aldol–Cyclization Cascade of 3-Isothiocyanato Oxindoles with α-Ketophosphonates for the Enantioselective Synthesis of β-Amino-α-hydroxyphosphonates. Organic Letters, 2015, 17, 5508-5511.	2.4	45
50	Catalytic Enantioselective 1,4-lodofunctionalizations of Conjugated Dienes. Organic Letters, 2015, 17, 4424-4427.	2.4	43
51	Catalytic asymmetric desymmetrization approaches to enantioenriched cyclopentanes. Organic and Biomolecular Chemistry, 2015, 13, 18-24.	1.5	45
52	Catalytic Enantioselective Halocyclizations beyond Lactones: Emerging Routes to Enantioenriched Nitrogenous Heterocycles. Synlett, 2014, 25, 163-169.	1.0	26
53	Catalytic Asymmetric Michael Addition/Cyclization Cascade Reaction of 3â€ksothiocyanatooxindoles with Nitro Olefins. European Journal of Organic Chemistry, 2014, 2014, 6696-6700.	1.2	33
54	Remarkable influence of secondary catalyst site on enantioselective desymmetrization of cyclopentenedione. Chemical Science, 2014, 5, 1627-1633.	3.7	93

#	Article	IF	CITATIONS
55	Enantioselective desymmetrization of prochiral 1,3-dinitropropanes via organocatalytic allylic alkylation. Chemical Communications, 2014, 50, 121-123.	2.2	28
56	Catalytic Enantioselective Iodoaminocyclization of Hydrazones. Organic Letters, 2014, 16, 3368-3371.	2.4	80
57	A Catalytic Michael/Horner–Wadsworth–Emmons Cascade Reaction for Enantioselective Synthesis of Thiochromenes. Advanced Synthesis and Catalysis, 2013, 355, 1989-1995.	2.1	57
58	Catalytic Enantioselective Iodoetherification of Oximes. Angewandte Chemie - International Edition, 2013, 52, 8450-8453.	7.2	145
59	Synergistic Lewis base and anion-binding catalysis for the enantioselective vinylogous addition of deconjugated butenolides to allenoates. Chemical Communications, 2013, 49, 11203.	2.2	65
60	Catalytic Asymmetric Direct Vinylogous Michael Addition of \hat{l}^3 -Aryl-Substituted Deconjugated Butenolides to Nitroolefins and N-Phenylmaleimide. Synthesis, 2013, 45, 1641-1646.	1.2	29
61	Catalytic enantioselective construction of quaternary stereocenters by direct vinylogous Michael addition of deconjugated butenolides to nitroolefins. Chemical Communications, 2012, 48, 5193-5195.	2.2	97
62	Organocatalytic asymmetric direct vinylogous Michael addition of \hat{l}_{\pm},\hat{l}^2 -unsaturated \hat{l}^3 -butyrolactam to nitroolefins. Organic and Biomolecular Chemistry, 2012, 10, 7313.	1.5	65
63	Catalytic Asymmetric Direct Vinylogous Michael Addition of Deconjugated Butenolides to Maleimides for the Construction of Quaternary Stereogenic Centers. Chemistry - A European Journal, 2012, 18, 15277-15282.	1.7	73
64	Catalytic Asymmetric Synthesis of $\hat{l}\pm,\hat{l}^2$ -Disubstituted $\hat{l}\pm,\hat{l}^3$ -Diaminophosphonic Acid Precursors by Michael Addition of $\hat{l}\pm$ -Substituted Nitrophosphonates to Nitroolefins. Organic Letters, 2012, 14, 3296-3299.	2.4	56
65	Lewis Base Catalysis by Thiourea: <i>N</i> -Bromosuccinimide-Mediated Oxidation of Alcohols. Journal of Organic Chemistry, 2012, 77, 1592-1598.	1.7	76
66	[4+2] Cycloaddition Reactions Catalyzed by a Chiral Oxazaborolidinium Cation. Reaction Rates and Diastereo-, Regio-, and Enantioselectivity Depend on Whether Both Bonds Are Formed Simultaneously. Organic Letters, 2010, 12, 1024-1027.	2.4	42
67	Enantioselective Pathway for the Synthesis of Laurenditerpenol. Organic Letters, 2010, 12, 1836-1838.	2.4	33
68	Highly Enantioselective Dielsâ^'Alder Reactions of Maleimides Catalyzed by Activated Chiral Oxazaborolidines. Organic Letters, 2010, 12, 632-635.	2.4	55
69	Asymmetric Enamine Catalysis. Chemical Reviews, 2007, 107, 5471-5569.	23.0	2,584
70	Structural optimization of thiourea-based bifunctional organocatalysts for the highly enantioselective dynamic kinetic resolution of azlactones. Organic and Biomolecular Chemistry, 2006, 4, 4319-4330.	1.5	95
71	Highly Efficient Dynamic Kinetic Resolution of Azlactones by Urea-Based Bifunctional Organocatalysts. Angewandte Chemie - International Edition, 2005, 44, 807-811.	7.2	250
72	Second-generation organocatalysts for the highly enantioselective dynamic kinetic resolution of azlactones. Chemical Communications, 2005, , 1898-1900.	2,2	136

#	Article	IF	CITATIONS
73	Iridiumâ€Catalyzed Enantioselective and Chemodivergent Allenylic Alkylation of Vinyl Azides for the Synthesis of αâ€Allenylic Amides and Ketones**. Angewandte Chemie, 0, , e202115821.	1.6	2
74	Enantioselective Total Synthesis of [3] $\hat{a} \in L$ adderanol through Late $\hat{a} \in S$ tage Organocatalytic Desymmetrization. Angewandte Chemie, 0, , .	1.6	2