David L Officer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/222707/publications.pdf

Version: 2024-02-01

202 papers

9,767 citations

50 h-index

93

40881

213 all docs

213 docs citations

213 times ranked

10955 citing authors

g-index

#	Article	IF	CITATIONS
1	Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coordination Chemistry Reviews, 2004, 248, 1363-1379.	9.5	737
2	Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 11760-11762.	1.5	691
3	Efficient Light Harvesting by Using Green Zn-Porphyrin-Sensitized Nanocrystalline TiO2Films. Journal of Physical Chemistry B, 2005, 109, 15397-15409.	1.2	425
4	Synthetic Routes to Multiporphyrin Arrays. Chemical Reviews, 2001, 101, 2751-2796.	23.0	416
5	Application of Metalloporphyrins in Nanocrystalline Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity. Langmuir, 2004, 20, 6514-6517.	1.6	288
6	A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering. Advanced Functional Materials, 2012, 22, 2692-2699.	7.8	254
7	Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon, 2013, 52, 296-304.	5.4	222
8	Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. Chemical Communications, 2012, 48, 4145.	2.2	215
9	Electrochemical synthesis of polypyrrole in ionic liquids. Polymer, 2004, 45, 1447-1453.	1.8	191
10	Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO ₂ Reduction to CO. ACS Energy Letters, 2019, 4, 666-672.	8.8	183
11	Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nature Communications, 2019, 10, 865.	5.8	179
12	Znâ^'Zn Porphyrin Dimer-Sensitized Solar Cells: Toward 3-D Light Harvesting. Journal of the American Chemical Society, 2009, 131, 15621-15623.	6.6	177
13	Processable conducting graphene/chitosan hydrogels for tissue engineering. Journal of Materials Chemistry B, 2015, 3, 481-490.	2.9	177
14	Synthesis and Characterization of a Multicomponent Rhenium(I) Complex for Application as an OLED Dopant. Angewandte Chemie - International Edition, 2006, 45, 2582-2584.	7.2	136
15	Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology, 2012, 23, 085201.	1.3	135
16	The influence of the monomer and the ionic liquid on the electrochemical preparation of polythiophene. Polymer, 2005, 46, 2047-2058.	1.8	128
17	Energy efficient electrochemical reduction of CO ₂ to CO using a three-dimensional porphyrin/graphene hydrogel. Energy and Environmental Science, 2019, 12, 747-755.	15.6	125
18	Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Heterojunction Photovoltaic Cells. ChemPhysChem, 2005, 6, 1253-1258.	1.0	99

#	Article	IF	Citations
19	The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells. Chemical Communications, 2008, , 4741.	2.2	97
20	Advanced Wearable Thermocells for Body Heat Harvesting. Advanced Energy Materials, 2020, 10, 2002539.	10.2	97
21	A Multiswitchable Poly(terthiophene) Bearing a Spiropyran Functionality: Understanding Photo- and Electrochemical Control. Journal of the American Chemical Society, 2011, 133, 5453-5462.	6.6	96
22	Injection Limitations in a Series of Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 3276-3279.	1.5	94
23	lonic liquid electrolyte porphyrin dye sensitised solar cells. Chemical Communications, 2010, 46, 3146.	2.2	92
24	A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction. Advanced Energy Materials, 2018, 8, 1801280.	10.2	88
25	An erodible polythiophene-based composite for biomedical applications. Journal of Materials Chemistry, 2011, 21, 5555.	6.7	83
26	Controlling the Structure of Supramolecular Porphyrin Arrays. Angewandte Chemie - International Edition, 1998, 37, 114-117.	7.2	82
27	Preparation, characterisation and biosensor application of conducting polymers based on ferrocene substituted thiophene and terthiophene. Electrochimica Acta, 2002, 47, 2715-2724.	2.6	78
28	Optimizing Electron Densities of Niâ€N Complexes by Hybrid Coordination for Efficient Electrocatalytic CO ₂ Reduction. ChemSusChem, 2020, 13, 929-937.	3.6	76
29	Understanding and Improving Solid-State Polymer/C60-Fullerene Bulk-Heterojunction Solar Cells Using Ternary Porphyrin Blends. Journal of Physical Chemistry C, 2007, 111, 15415-15426.	1.5	72
30	Chemically converted graphene: scalable chemistries to enable processing and fabrication. NPG Asia Materials, 2015, 7, e186-e186.	3.8	72
31	Aldehyde-Appended Tetraphenylporphyrin: A New Building Block for Porphyrin Arrays. Angewandte Chemie International Edition in English, 1995, 34, 900-902.	4.4	71
32	A DFT study of the optical properties of substituted Zn(II)TPP complexes. Computational and Theoretical Chemistry, 2006, 759, 17-24.	1.5	71
33	A spectroscopic and DFT study of thiophene-substituted metalloporphyrins as dye-sensitized solar cell dyes. Physical Chemistry Chemical Physics, 2009, 11, 5598.	1.3	71
34	Investigation of the electropolymerisation of EDOT in ionic liquids. Synthetic Metals, 2005, 153, 257-260.	2.1	69
35	Toward Functionalized Conducting Polymers: Synthesis and Characterization of Novel β-(Styryl)terthiophenes. Journal of Organic Chemistry, 2003, 68, 8974-8983.	1.7	67
36	Functionalized polythiophene-coated textile: A new anode material for a flexible battery. Journal of Power Sources, 2006, 156, 610-614.	4.0	64

#	Article	IF	CITATIONS
37	Photoâ€Chemopropulsion – Lightâ€Stimulated Movement of Microdroplets. Advanced Materials, 2014, 26, 7339-7345.	11.1	64
38	Creating conductive structures for cell growth: Growth and alignment of myogenic cell types on polythiophenes. Journal of Biomedical Materials Research - Part A, 2010, 95A, 256-268.	2.1	62
39	Efficient synthesis of free-base 2-formyl-5,10,15,20-tetraarylporphyrins, their reduction and conversion to [(porphyrin-2-yl)methyl]phosphonium salts. Journal of Porphyrins and Phthalocyanines, 2002, 06, 708-719.	0.4	61
40	High Molar Extinction Coefficient Ruthenium Sensitizers for Thin Film Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 1998-2003.	1.5	61
41	Self-healing graphene oxide-based composite for electromagnetic interference shielding. Carbon, 2019, 155, 499-505.	5.4	60
42	The synthesis of butadiene-bridged porphyrin dimers and styryl porphyrins using a porphyrin-derived Wittig reagent. Tetrahedron Letters, 1993, 34, 8531-8534.	0.7	59
43	Determining the Orientation and Molecular Packing of Organic Dyes on a TiO ₂ Surface Using X-ray Reflectometry. Langmuir, 2011, 27, 12944-12950.	1.6	57
44	Novel nanographene/porphyrin hybrids – preparation, characterization, and application in solar energy conversion schemes. Chemical Science, 2013, 4, 3085.	3.7	57
45	Theoretical and Spectroscopic Study of a Series of Styryl-Substituted Terthiophenes. Journal of Physical Chemistry A, 2003, 107, 11505-11516.	1.1	56
46	Direct exfoliation of graphite with a porphyrin – creating functionalizable nanographene hybrids. Chemical Communications, 2012, 48, 8745.	2.2	56
47	High Performance Fe Porphyrin/Ionic Liquid Coâ€catalyst for Electrochemical CO ₂ Reduction. Chemistry - A European Journal, 2016, 22, 14158-14161.	1.7	55
48	Photovoltaic devices based on polythiophenes and substituted polythiophenes. Synthetic Metals, 2001, 123, 53-60.	2.1	54
49	Coexistence of Femtosecond- and Nonelectron-Injecting Dyes in Dye-Sensitized Solar Cells: Inhomogeniety Limits the Efficiency. Journal of Physical Chemistry C, 2011, 115, 22084-22088.	1.5	53
50	Building large porphyrin arrays: pentamers and nonamers. Chemical Communications, 1996, , 1657.	2.2	51
51	Functionalised polyterthiophenes as anode materials in polymer/polymer batteries. Synthetic Metals, 2010, 160, 76-82.	2.1	51
52	Improved performance of porphyrin-based dye sensitised solar cells by phosphinic acid surface treatment. Energy and Environmental Science, 2009, 2, 1069.	15.6	49
53	Moving Droplets in 3D Using Light. Advanced Materials, 2018, 30, e1801821.	11.1	49
54	The synthesis of dimeric porphyrins linked by a ferrocene. Tetrahedron Letters, 1997, 38, 1249-1252.	0.7	48

#	Article	IF	CITATIONS
55	Tuning from π,π* to Charge-Transfer Excited States in Styryl-Substituted Terthiophenes:  An Ultrafast and Steady-State Emission Study. Journal of Physical Chemistry A, 2006, 110, 7696-7702.	1.1	47
56	3D printable conducting hydrogels containing chemically converted graphene. Nanoscale, 2017, 9, 2038-2050.	2.8	47
57	Functionalizing Porphyrins via Wittig Reactions: A Building Block Approach. Synlett, 1998, 1998, 1297-1307.	1.0	46
58	Carbon Nanohorns as Integrative Materials for Efficient Dyeâ€Sensitized Solar Cells. Advanced Materials, 2013, 25, 6513-6518.	11.1	46
59	Effect of electron withdrawing or donating substituents on the photovoltaic performance of polythiophenes. Synthetic Metals, 2002, 128, 35-42.	2.1	44
60	A bio-friendly, green route to processable, biocompatible graphene/polymer composites. RSC Advances, 2015, 5, 45284-45290.	1.7	44
61	The effect of reduced graphene oxide addition on the superconductivity of MgB2. Journal of Materials Chemistry, 2012, 22, 13941.	6.7	43
62	Photoelectrochemical cells based on polymers and copolymers from terthiophene and nitrostyrylterthiophene. Synthetic Metals, 2001, 123, 225-237.	2.1	42
63	Significant Performance Improvement of Porphyrin-Sensitized TiO ₂ Solar Cells under White Light Illumination. Journal of Physical Chemistry C, 2011, 115, 317-326.	1.5	42
64	Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance. Nature Communications, 2018, 9, 5070.	5.8	42
65	The oxidative conversion of (E)-α-(Arylmethylene)benzeneacetates into substituted phenanthrenes: the propitious use of boron trifluoride with vanadium trifluoride oxide. Australian Journal of Chemistry, 1984, 37, 2119.	0.5	41
66	Processable 2D materials beyond graphene: MoS ₂ liquid crystals and fibres. Nanoscale, 2016, 8, 16862-16867.	2.8	40
67	Synthesis, reactivity and spectroscopy of ferrocene-functionalised porphyrins, with a conjugated connection between the ferrocene and the porphyrin core. Journal of the Chemical Society Dalton Transactions, 1999, , 3349-3354.	1.1	39
68	Linker Conjugation Effects in Rhenium(I) Bifunctional Holeâ€Transport/Emitter Molecules. Chemistry - A European Journal, 2009, 15, 3682-3690.	1.7	39
69	A Porphyrinâ€Doped Polymer Catalyzes Selective, Lightâ€Assisted Water Oxidation in Seawater. Angewandte Chemie - International Edition, 2012, 51, 1907-1910.	7.2	39
70	A readily-prepared, convergent, oxygen reduction electrocatalyst. Chemical Communications, 2007, , 3353.	2.2	38
71	Spectroscopic and computational study of \hat{l}^2 -ethynylphenylene substituted zinc and free-base porphyrins. Physical Chemistry Chemical Physics, 2011, 13, 1597-1605.	1.3	38
72	Design and engineering of water-soluble light-harvesting protein maquettes. Chemical Science, 2017, 8, 316-324.	3.7	38

#	Article	IF	CITATIONS
73	Self-Healing Electrode with High Electrical Conductivity and Mechanical Strength for Artificial Electronic Skin. ACS Applied Materials & Interfaces, 2019, 11, 46026-46033.	4.0	37
74	Electrodeposition of pyrrole and 3-(4-tert-butylphenyl)thiophene copolymer for supercapacitor applications. Synthetic Metals, 2012, 162, 2216-2221.	2.1	36
75	Bis(ferrocenyl)porphyrins. Compounds with strong long-range metal–metal couplingâ€. Chemical Communications, 1999, , 637-638.	2.2	35
76	A high energy density solar rechargeable redox battery. Journal of Materials Chemistry A, 2016, 4, 3446-3452.	5.2	35
77	Synthesis, Characterization, and Photophysics of Oxadiazole- and Diphenylaniline-Substituted Re(I) and Cu(I) Complexes. Inorganic Chemistry, 2013, 52, 1304-1317.	1.9	34
78	Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film. Applied Physics Letters, 2011, 98, .	1.5	33
79	Fabrication of 3D structures from graphene-based biocomposites. Journal of Materials Chemistry B, 2017, 5, 3462-3482.	2.9	33
80	Efficient and Stable Solid-State Dye-Sensitized Solar Cells by the Combination of Phosphonium Organic Ionic Plastic Crystals with Silica. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32271-32280.	4.0	33
81	Photoelectrochemical cells based on a novel porphyrin containing light harvesting conducting copolymer. Electrochimica Acta, 2004, 49, 329-337.	2.6	32
82	\hat{l}^2 -Terthiophene aldehyde and phosphonate: key building blocks for the synthesis of functionalised conducting polymers. Tetrahedron Letters, 2001, 42, 8733-8735.	0.7	31
83	A Spectroscopic and Computational Study of the Neutral and Radical Cation Species of Conjugated Aryl-Substituted 2,5-Bis(2-thien-2-ylethenyl)thiophene-Based Oligomers. Journal of Physical Chemistry A, 2007, 111, 7171-7180.	1.1	31
84	Indanedione-Substituted Poly(terthiophene)s: Processable Conducting Polymers with Intramolecular Charge Transfer Interactions. Macromolecules, 2010, 43, 3817-3827.	2.2	30
85	Anhydrous organic dispersions of highly reduced chemically converted graphene. Carbon, 2014, 76, 368-377.	5.4	30
86	Synthesis, Characterization, Structure, Electrochemistry, and Spectroscopy of Porphyrins That Have a Conjugated Connection to Donor/Acceptor Groups. Inorganic Chemistry, 1997, 36, 6270-6278.	1.9	29
87	The design and synthesis of porphyrin/oligiothiophene hybrid monomers. Organic and Biomolecular Chemistry, 2005, 3, 2075.	1.5	28
88	Extending the porphyrin core: synthesis and photophysical characterization of porphyrins with Ï€-conjugated I²-substituents. New Journal of Chemistry, 2008, 32, 166-178.	1.4	28
89	The synthesis of orbornadienes conjugatively linked to tetraphenylporphyrin ad anthracene: towards a norbornadiene-derived molecular electronic device. Journal of the Chemical Society Chemical Communications, 1994, , 1445.	2.0	26
90	Tuning the optical properties of ZnTPP using carbonyl ring fusion. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 931-935.	2.0	23

#	Article	IF	Citations
91	Towards Hydrogen Energy: Progress on Catalysts for Water Splitting. Australian Journal of Chemistry, 2012, 65, 577.	0.5	22
92	A light-assisted, polymeric water oxidation catalyst that selectively oxidizes seawater with a low onset potential. Chemical Science, 2013, 4, 2797.	3.7	22
93	A facile synthesis of spiroketals. Tetrahedron Letters, 1988, 29, 3609-3612.	0.7	21
94	Studies in the cycloproparene series. The synthesis, trapping, and spectral characterization of 1H-cyclopropa[l]phenanthrene. Journal of the American Chemical Society, 1985, 107, 7175-7176.	6.6	20
95	Characterization of the Oxidation Products of Styryl-Substituted Terthiophenes and Sexithiophenes Using Electronic Absorption Spectroscopy and Time-Dependent DFT. Journal of Physical Chemistry A, 2005, 109, 1961-1973.	1.1	20
96	Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte. Chemical Communications, 2011, 47, 9327.	2.2	20
97	Cation Exchange at Semiconducting Oxide Surfaces: Origin of Light-Induced Performance Increases in Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 11885-11898.	1.5	20
98	Bio-Inspired Stretchable and Contractible Tough Fiber by the Hybridization of GO/MWNT/Polyurethane. ACS Applied Materials & Diterfaces, 2019, 11, 31162-31168.	4.0	20
99	A pH-responsive hydroquinone-functionalised glassycarbon electrode. Chemical Communications, 2001, , 2628-2629.	2.2	19
100	Photoelectrochemical Solar Cells based on Polyterthiophenes Containing Porphyrins using Ionic Liquid Electrolyte. Electrochemical and Solid-State Letters, 2005, 8, A528.	2.2	19
101	Resonance Raman Studies of \hat{l}^2 -Substituted Porphyrin Systems with Unusual Electronic Absorption Properties. ChemPhysChem, 2006, 7, 2358-2365.	1.0	19
102	Highly ordered mesoporous carbon/iron porphyrin nanoreactor for the electrochemical reduction of CO ₂ . Journal of Materials Chemistry A, 2020, 8, 14966-14974.	5.2	19
103	Towards functionalized poly(terthiophenes): regioselective synthesis of oligoether-substituted bis(styryl)sexithiophenes. Organic and Biomolecular Chemistry, 2005, 3, 2008.	1.5	18
104	Why Do Some Alkoxybromothiophenes Spontaneously Polymerize?. Australian Journal of Chemistry, 2011, 64, 335.	0.5	18
105	Electrically Induced Disassembly of Electroactive Multilayer Films Fabricated from Water Soluble Polythiophenes. Advanced Functional Materials, 2012, 22, 5020-5027.	7.8	18
106	Extrusion Printed Graphene/Polycaprolactone/Composites for Tissue Engineering. Materials Science Forum, 0, 773-774, 496-502.	0.3	18
107	Bipyridine–porphyrin conjugates with a conjugated connection. Chemical Communications, 2000, , 747-748.	2.2	17
108	Synthesis and characterization of novel styryl-substituted oligothienylenevinylenes. Tetrahedron, 2006, 62, 2190-2199.	1.0	17

#	Article	IF	Citations
109	The effect of oxidation on the structure of styryl-substituted sexithiophenes: A resonance Raman spectroscopy and density functional theory study. Journal of Chemical Physics, 2006, 124, 164501.	1.2	17
110	A Nonconjugated Bridge in Dimer-Sensitized Solar Cells Retards Charge Recombination without Decreasing Charge Injection Efficiency. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10824-10829.	4.0	17
111	Electrochemically Induced Synthesis of Poly(2,6-carbazole). Macromolecular Rapid Communications, 2015, 36, 1749-1755.	2.0	17
112	Photoelectrochemical Cells Based on Inherently Conducting Polymers. MRS Bulletin, 2005, 30, 46-49.	1.7	16
113	Novel fullerene-functionalised poly(terthiophenes). Journal of Electroanalytical Chemistry, 2007, 599, 79-84.	1.9	16
114	Probing Donorâ€"Acceptor Interactions in <i>meso</i> -Substituted Zn(II) Porphyrins Using Resonance Raman Spectroscopy and Computational Chemistry. Journal of Physical Chemistry C, 2015, 119, 22379-22391.	1.5	16
115	Electrochemical and optical aspects of cobalt meso-carbazole substituted porphyrin complexes. Electrochimica Acta, 2020, 330, 135140.	2.6	16
116	Porous PNIPAm hydrogels: Overcoming diffusion-governed hydrogel actuation. Sensors and Actuators A: Physical, 2020, 301, 111784.	2.0	16
117	Studies in the cycloproparene series: Halogenation and dehydrohalogenation of some 1a,9b-dihydrocyclopropa[l]phenanthrenes. Australian Journal of Chemistry, 1983, 36, 1167.	0.5	15
118	A convenient synthesis of trimeric porphyrins with systematically variable geometry. Tetrahedron, 1999, 55, 2401-2418.	1.0	15
119	Towards functionalised terthiophene-based polymers. Synthetic Metals, 2005, 154, 117-120.	2.1	15
120	An alternative synthesis of \hat{l}^2 -pyrrolic acetylene-substituted porphyrins. Tetrahedron Letters, 2008, 49, 5632-5635.	0.7	15
121	Energy transfer processes in electronically coupled porphyrin hetero-dyads connected at the \hat{l}^2 position. Physical Chemistry Chemical Physics, 2009, 11, 2166.	1.3	15
122	A merocyanine-based conductive polymer. Journal of Materials Chemistry C, 2013, 1, 3913.	2.7	15
123	Thermal actuation of hydrogels from PNIPAm, alginate, and carbon nanofibres. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 46-52.	2.4	15
124	Hinged bis-porphyrin scaffolds I. The synthesis of a new porphyrin diene and its role in constructing hinged porphyrin dyads and cavity systems. Tetrahedron Letters, 2009, 50, 667-670.	0.7	14
125	Physicochemical study of spiropyran–terthiophene derivatives: photochemistry and thermodynamics. Physical Chemistry Chemical Physics, 2012, 14, 9112.	1.3	14
126	In vitro growth and differentiation of primary myoblasts on thiophene based conducting polymers. Biomaterials Science, 2013, 1, 983.	2.6	14

#	Article	IF	Citations
127	A study of TiO ₂ binder-free paste prepared for low temperature dye-sensitized solar cells. Journal of Materials Research, 2013, 28, 488-496.	1.2	14
128	Electrotactic ionic liquid droplets. Sensors and Actuators B: Chemical, 2017, 239, 1069-1075.	4.0	14
129	Functionalised poly(terthiophenes). Synthetic Metals, 2003, 135-136, 97-98.	2.1	13
130	Electrochemical and photoelectronic studies on C60-pyrrolidine-functionalised poly(terthiophene). Electrochimica Acta, 2014, 141, 51-60.	2.6	13
131	Photovoltaic devices based on poly(bis-terthiophenes) and substituted poly(bisterthiophene). Synthetic Metals, 2003, 137, 1373-1374.	2.1	12
132	A modular procedure for the synthesis of functionalised \hat{l}^2 -substituted terthiophene monomers for conducting polymer applications. Tetrahedron, 2007, 63, 11141-11152.	1.0	12
133	Synthesis and Characterization of Covalently Linked Graphene/Chitosan Composites. Jom, 2016, 68, 384-390.	0.9	11
134	Studies in the cycloproparene series: Approaches to octahydrocyclopropa-[l]phenanthrenes. Australian Journal of Chemistry, 1983, 36, 1291.	0.5	10
135	Structural and electronic properties of substituted terthiophenes. Synthetic Metals, 2005, 154, 325-328.	2.1	10
136	Functional Electro-materials Based on Ferricyanide Redox-active Ionic Liquids. Electrochimica Acta, 2017, 245, 934-940.	2.6	10
137	Solidâ€State Poly(ionic liquid) Gels for Simultaneous CO ₂ Adsorption and Electrochemical Reduction. Energy Technology, 2018, 6, 702-709.	1.8	10
138	Modulation of Donor-Acceptor Distance in a Series of Carbazole Push-Pull Dyes; A Spectroscopic and Computational Study. Molecules, 2018, 23, 421.	1.7	10
139	Amphiphilic Zinc Porphyrin Singleâ€Walled Carbon Nanotube Hybrids: Efficient Formation and Excited State Charge Transfer Studies. Small, 2021, 17, 2005648.	5.2	10
140	Dehydrohalogenation of endo- 1-chloro-1a, 9b-dihydrocyclopropa 11 phenanthrene. Tetrahedron Letters, 1981, 22, 3687-3688.	0.7	9
141	Metallation effects on the thermal interconversion of atropisomers of di(orthomethylarene)-substituted porphyrins. Dalton Transactions, 2004, , 319.	1.6	9
142	Towards processable polyether-functionalized poly(3'-styrylterthiophenes). Synthetic Metals, 2005, 154, 93-96.	2.1	9
143	Zincâ-'Porphyrin Phosphonate Coordination:Â Structural Control through a Zinc Phosphorylâ-'Oxygen Interaction. Inorganic Chemistry, 2007, 46, 4781-4783.	1.9	9
144	Functionalising carbon nanotubes. International Journal of Nanotechnology, 2008, 5, 331.	0.1	9

#	Article	IF	CITATIONS
145	Optical switching of protein interactions on photosensitive–electroactive polymers measured by atomic force microscopy. Journal of Materials Chemistry B, 2013, 1, 2162.	2.9	9
146	Flexible Tuning of Unsaturated $\hat{l}^2\hat{a}\in S$ ubstituents on Zn Porphyrins: A Synthetic, Spectroscopic and Computational Study. Chemistry - A European Journal, 2015, 21, 15622-15632.	1.7	9
147	Carbazole-substituted dialkoxybenzodithiophene dyes for efficient light harvesting and the effect of alkoxy tail length. Dyes and Pigments, 2021, 186, 109002.	2.0	9
148	Raman Spectroscopy of Short-Lived Terthiophene Radical Cations Generated by Photochemical and Chemical Oxidation. ChemPhysChem, 2006, 7, 1276-1285.	1.0	8
149	Electrodeposition and Characterisation of Polypyrroles Containing Sulfonated Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 3487-3494.	0.9	8
150	Choosing the right nanoparticle size – designing novel ZnO electrode architectures for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 7516-7522.	5.2	8
151	Molecular design of an electropolymerized copolymer with carboxylic and sulfonic acid functionalities. Synthetic Metals, 2022, 285, 117029.	2.1	8
152	Self-Assembled Porphyrin Arrays via Zinc–Nitrogen Coordination. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 53, 143-148.	1.6	7
153	A flip-disorder in the structure of 3-[2-(anthracen-9-yl)ethenyl]thiophene. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, 05745-05747.	0.2	7
154	Modulation of Electronic Properties in Neutral and Oxidized Oligothiophenes Substituted with Conjugated Polyaromatic Hydrocarbons. Journal of Physical Chemistry A, 2007, 111, 2385-2397.	1.1	7
155	A novel modified terpyridine derivative as a model molecule to study kinetic-based optical spectroscopic ion determination methods. Synthetic Metals, 2016, 219, 101-108.	2.1	7
156	Aldehyde isomers of porphyrin: A spectroscopic and computational study. Journal of Molecular Structure, 2018, 1173, 665-670.	1.8	7
157	When "Donor–Acceptor―Dyes Delocalize: A Spectroscopic and Computational Study of D–A Dyes Using "Michler's Base― Journal of Physical Chemistry A, 2019, 123, 5957-5968.	1.1	7
158	A Phosphonated Poly(ethylenedioxythiophene) Derivative with Low Oxidation Potential for Energy-Efficient Bioelectronic Devices. Chemistry of Materials, 2022, 34, 140-151.	3.2	7
159	Transfer technology II. Preparation of transfer reagents for the site specific delivery of disubstituted cyclobutadienes and their use in the synthesis of hetero bridged propellanes Tetrahedron Letters, 1987, 28, 6507-6510.	0.7	6
160	Spectroscopic properties of porphyrin dimers incorporating phenylenevinylene linkers. Journal of Porphyrins and Phthalocyanines, 2000, 04, 627-634.	0.4	6
161	The synthesis of specifically metallated heterobimetallic dimeric porphyrins. Journal of Porphyrins and Phthalocyanines, 2002, 06, 720-736.	0.4	6
162	Glassy Carbon Based Sensors. Synthetic Metals, 2003, 137, 1429-1430.	2.1	6

#	Article	IF	CITATIONS
163	Spectroscopic and density functional theory study of functionalized thiophene-benzene derivatives. Journal of Raman Spectroscopy, 2005, 36, 445-452.	1.2	6
164	Experimental and Computational Studies of Substituted Terthiophene Oligomers as Electroluminescent Materials. Synthetic Metals, 2005, 153, 225-228.	2.1	6
165	2,5-Bis(2-cyano-2-thienylvinyl)thiophene. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5931-o5932.	0.2	6
166	Electronic Studies on Oligothienylenevinylenes: Understanding the Nature of Their Ground and Excited Electronic States. ChemPhysChem, 2009, 10, 1901-1910.	1.0	6
167	A simple one step process for enhancement of titanium foil dye sensitised solar cell anodes. Journal of Materials Chemistry A, 2015, 3, 3266-3270.	5.2	6
168	A versatile binder-free TiO2 paste for dye-sensitized solar cells. RSC Advances, 2015, 5, 29513-29523.	1.7	6
169	Computational and Spectroscopic Analysis of \hat{I}^2 -Indandione Modified Zinc Porphyrins. Journal of Physical Chemistry A, 2018, 122, 4448-4456.	1.1	6
170	Dual Droplet Functionality: Phototaxis and Photopolymerization. ACS Applied Materials & Discrete Services, 2019, 11, 31484-31489.	4.0	6
171	Investigation of Ferrocene Linkers in \hat{I}^2 -Substituted Porphyrins. Journal of Physical Chemistry A, 2020, 124, 5513-5522.	1.1	6
172	The Supramolecular Assembly of Porphyrin Arrays. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1999, 35, 185-190.	1.6	5
173	Synthesis and polymerisation of fully conjugated polyether-substituted terthiophenes. Synthetic Metals, 2003, 135-136, 103-104.	2.1	5
174	Computational Study of Supramolecular Bis-porphyrin "Molecular Tweezers― Theoretical Chemistry Accounts, 2007, 117, 239-245.	0.5	5
175	Photocontrolled directional transport using water-in-oil droplets. New Journal of Chemistry, 2021, 45, 1172-1175.	1.4	5
176	An attempted synthesis of the 5,6-Dihydrocyclobuta[l]phenanthrene system by a Thorpe cyclization. Australian Journal of Chemistry, 1978, 31, 225.	0.5	4
177	Vibrational Spectra and Calculations on Substituted Terthiophenes. Synthetic Metals, 2003, 137, 1367-1368.	2.1	4
178	Electrochemical actuation properties of a novel solution-processable polythiophene. Electrochimica Acta, 2007, 53, 1830-1836.	2.6	4
179	Raman frequency dispersion studies of substituted polythiophene films. International Journal of Nanotechnology, 2009, 6, 344.	0.1	4
180	Application of terpyridyl ligands to tune the optical and electrochemical properties of a conducting polymer. RSC Advances, 2018, 8, 29505-29512.	1.7	4

#	Article	IF	CITATIONS
181	Polyterthiophenes Crossâ€Linked with Terpyridyl Metal Complexes for Molecular Architecture of Optically and Electrochemically Tunable Materials. ChemElectroChem, 2020, 7, 4453-4459.	1.7	4
182	The facile synthesis of functionalised pyridine complexes using a ruthenium building block. Inorganica Chimica Acta, 2001, 313, 71-76.	1.2	3
183	Facile synthesis of acetylene-substituted terthiophenes. Tetrahedron Letters, 2007, 48, 6245-6248.	0.7	3
184	Flip-type disorder in 3-substituted 2,2′:5′,2′′-terthiophenes. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o400-o404.	0.4	3
185	The electronic characterization of conjugated aryl-substituted 2,5-bis(2-thien-2-ylethenyl) thiophene-based oligomers. Journal of Molecular Structure, 2013, 1047, 80-86.	1.8	3
186	Synthesis and Lightâ€Harvesting Potential of Cyanovinyl βâ€Substituted Porphyrins and Dyads. European Journal of Organic Chemistry, 2017, 2017, 5750-5762.	1.2	3
187	Biofunctional conducting polymers: synthetic advances, challenges, and perspectives towards their use in implantable bioelectronic devices. Advances in Physics: X, 2021, 6, .	1.5	3
188	Structure of methyl (E)-4-(3,4-dimethoxyphenyl)-3-phenyl-1-pyrazoline-3-carboxylate. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 2397-2400.	0.4	2
189	CHARACTERISATION OF CONDUCTING POLYMERS USING ION BEAM ANALYSIS. Modern Physics Letters B, 2001, 15, 1411-1418.	1.0	2
190	Emulating photosynthetic processes with light harvesting synthetic protein (maquette) assemblies on titanium dioxide. Materials Advances, 2020, 1, 1877-1885.	2.6	2
191	Impact of Sterilization on a Conjugated Polymer-Based Bioelectronic Patch. ACS Applied Polymer Materials, 2021, 3, 2541-2552.	2.0	2
192	Energy transfer and structure determination of porphyrin dimers linked via a phenylenebisvinylene bridge: A time-resolved triplet electron paramagnetic resonance study. Journal of Porphyrins and Phthalocyanines, 2002, 06, 578-592.	0.4	1
193	Cover Picture: Synthesis and Characterization of a Multicomponent Rhenium(I) Complex for Application as an OLED Dopant (Angew. Chem. Int. Ed. 16/2006). Angewandte Chemie - International Edition, 2006, 45, 2481-2481.	7.2	1
194	Electrochemical and UV–Vis/ESR spectroelectrochemical properties of thienylenevinylenes substituted by a 4-cyanostyryl group. Electrochimica Acta, 2011, 56, 4445-4450.	2.6	1
195	Light Harvesting and Light Activatable Protein Maquettes Designed fromÂScratch. Biophysical Journal, 2013, 104, 531a.	0.2	1
196	Use of alkylated, amphiphilic zinc porphyrins to disperse individualized SWCNTs. Journal of Porphyrins and Phthalocyanines, 2018, 22, 573-580.	0.4	1
197	Interaction of graphene, MnO , and Ca2+ for enhanced biomimetic, â€`bubble-free' oxygen evolution reaction at mild pH. International Journal of Hydrogen Energy, 2021, 46, 28397-28405.	3.8	1
198	Investigations of electrochemical and spectroelectrochemical properties (UV-Vis, EPR) of thiophene trimer derivatives substituted with phenylvinyl groups. Polimery, 2009, 54, 209-215.	0.4	1

#	Article	IF	CITATIONS
199	[5,15-Bis(4-pyridyl)-2,8,12,18-tetra-n-butyl-3,7,13,17-tetramethylporphyrinato]zinc(II) chloroform solvate. Acta Crystallographica Section E: Structure Reports Online, 2001, 57, m478-m479.	0.2	O
200	(Z)-2-Phenyl-3-(2,2′:5′,2′′-terthiophen-3′-yl)acrylonitrile. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3054-o3055.	0.2	0
201	A study of TiO ₂ binder-free paste prepared for low temperature dye sensitized solar cells – ERRATUM . Journal of Materials Research, 2013, 28, 657-657.	1.2	O
202	Porphyrin and Phthalocyanine Graphene Assemblies As Electrocatalysts for CO2 Reduction. ECS Meeting Abstracts, 2019, , .	0.0	0