
Weiqiang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2226670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Nanotube and Polypyrrole Composites: Coating and Doping. Advanced Materials, 2000, 12, 522-526.	11.1	529
2	A new templating method for three-dimensional mesopore networks. Chemical Communications, 2001, , 713-714.	2.2	193
3	Use of organic solvent-assisted exfoliated MoS ₂ for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. Journal of Materials Chemistry A, 2016, 4, 5265-5273.	5.2	166
4	Liquid Exfoliated Graphene as Dopant for Improving the Thermoelectric Power Factor of Conductive PEDOT:PSS Nanofilm with Hydrazine Treatment. ACS Applied Materials & Interfaces, 2015, 7, 14917-14925.	4.0	130
5	One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation. Electrochemistry Communications, 2010, 12, 882-885.	2.3	113
6	Highly electrical and thermoelectric properties of a PEDOT:PSS thin-film via direct dilution–filtration. RSC Advances, 2015, 5, 60708-60712.	1.7	109
7	High efficient electrocatalytic oxidation of methanol on Pt/polyindoles composite catalysts. International Journal of Hydrogen Energy, 2010, 35, 3270-3279.	3.8	100
8	Efficient DMSO-Vapor Annealing for Enhancing Thermoelectric Performance of PEDOT:PSS-Based Aerogel. ACS Applied Materials & Interfaces, 2019, 11, 2408-2417.	4.0	99
9	An efficient PEDOT-coated textile for wearable thermoelectric generators and strain sensors. Journal of Materials Chemistry C, 2019, 7, 3496-3502.	2.7	95
10	Facile Fabrication of PEDOT:PSS/Polythiophenes Bilayered Nanofilms on Pure Organic Electrodes and Their Thermoelectric Performance. ACS Applied Materials & Interfaces, 2013, 5, 12811-12819.	4.0	87
11	Electron-Beam Induced Growth of Bare Silver Nanowires from Zeolite Crystallites. Advanced Materials, 2001, 13, 1608-1611.	11.1	83
12	Electrochemical fabrication of novel platinum-poly(5-nitroindole) composite catalyst and its application for methanol oxidation in alkaline medium. International Journal of Hydrogen Energy, 2009, 34, 9316-9323.	3.8	78
13	Enhanced electrocatalytic performance for methanol oxidation on Pt–TiO2/ITO electrode under UV illumination. International Journal of Hydrogen Energy, 2010, 35, 13290-13297.	3.8	78
14	Progress in Conjugated Polyindoles: Synthesis, Polymerization Mechanisms, Properties, and Applications. Polymer Reviews, 2017, 57, 248-275.	5.3	78
15	High-performance capacitive behavior of layered reduced graphene oxide and polyindole nanocomposite materials. RSC Advances, 2016, 6, 29840-29847.	1.7	75
16	High efficient electrocatalytic oxidation of formic acid on Pt/polyindoles composite catalysts. Electrochimica Acta, 2010, 55, 2911-2917.	2.6	73
17	Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation. Journal of Colloid and Interface Science, 2017, 493, 190-197.	5.0	70
18	Robust flexible WS2/PEDOT:PSS film for use in high-performance miniature supercapacitors. Journal of Electroanalytical Chemistry, 2018, 824, 136-146.	1.9	68

#	Article	IF	CITATIONS
19	Advanced Oxygenâ€Vacancy Ceâ€Doped MoO ₃ Ultrathin Nanoflakes Anode Materials Used as Asymmetric Supercapacitors with Ultrahigh Energy Density. Advanced Energy Materials, 2022, 12, .	10.2	63
20	Studies on the Reorganization of Extended Defects with Increasingn in the Perovskite-Based La4Srn-4TinO3n+2 Series. Advanced Functional Materials, 2005, 15, 1000-1008.	7.8	59
21	Biotransformation of Panax notoginseng saponins into ginsenoside compound K production by Paecilomyces bainier sp. 229. Journal of Applied Microbiology, 2008, 104, 699-706.	1.4	59
22	Size-controlled short nanobells: Growth and formation mechanism. Applied Physics Letters, 2000, 77, 4136-4138.	1.5	58
23	1H NMR spectral studies on the polymerization mechanism of indole and its derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 723-728.	2.0	55
24	Polycarbazole as an efficient promoter for electrocatalytic oxidation of formic acid on Pt and Pt–Ru nanoparticles. International Journal of Hydrogen Energy, 2011, 36, 1903-1912.	3.8	52
25	Simple Layer-by-Layer Assembly Method for Simultaneously Enhanced Electrical Conductivity and Thermopower of PEDOT:PSS/ <i>ce</i> -MoS ₂ Heterostructure Films. ACS Applied Energy Materials, 2018, 1, 3123-3133.	2.5	50
26	Electrosyntheses of high-quality poly(5-nitroindole) films in boron trifluoride diethyl etherate containing additional diethyl ether. Journal of Polymer Science Part A, 2005, 43, 3986-3997.	2.5	48
27	High efficient electrocatalytic oxidation of formic acid at Pt dispersed on porous poly(o-methoxyaniline). International Journal of Hydrogen Energy, 2011, 36, 6414-6421.	3.8	47
28	Facile electrochemical polymerization of 2-(thiophen-2-yl)furan and the enhanced capacitance properties of its polymer in acetonitrile electrolyte containing boron trifluoride diethyl etherate. Electrochimica Acta, 2015, 155, 29-37.	2.6	46
29	Effect of substituent position on electrodeposition, morphology, and capacitance performance of polyindole bearing a carboxylic group. Electrochimica Acta, 2015, 176, 1302-1312.	2.6	45
30	Roles of Polyethylenimine Ethoxylated in Efficiently Tuning the Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene)-Rich Nanocrystal Films. ACS Applied Materials & Interfaces, 2019, 11, 8138-8147.	4.0	44
31	Studies on the preparation, crystal structure and bioactivity of ginsenoside compound K. Journal of Asian Natural Products Research, 2006, 8, 519-527.	0.7	43
32	Fused Heterocyclic Molecule-Functionalized N-Doped Reduced Graphene Oxide by Non-Covalent Bonds for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 45202-45213.	4.0	43
33	Electrochemical fabrication of a porous network MnO2/poly(5-cyanoindole) composite and its capacitance performance. Electrochimica Acta, 2014, 138, 270-277.	2.6	42
34	Differential pulse striping voltammetric determination of molluscicide niclosamide using three different carbon nanomaterials modified electrodes. Electrochimica Acta, 2014, 127, 86-94.	2.6	41
35	Capacitance comparison of poly(indole-5-carboxylic acid) in different electrolytes and its symmetrical supercapacitor in HClO4 aqueous electrolyte. Synthetic Metals, 2015, 203, 98-106.	2.1	40
36	Electrochemical synthesis and capacitance properties of a novel poly(3,4-ethylenedioxythiophene) Tj ETQq0 0 C) rgBT /Ove 2.6	erlogg 10 Tf 50

3

#	Article	IF	CITATIONS
37	Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: a comparison of hybrid types. Journal of Materials Science: Materials in Electronics, 2016, 27, 1769-1776.	1.1	34
38	Electrochemical Self-Assembly of a 3D Interpenetrating Porous Network PEDOT-PEC-WS ₂ Nanocomposite for High-Efficient Energy Storage. Journal of Physical Chemistry C, 2019, 123, 25428-25436.	1.5	31
39	Flexible metal-free hybrid hydrogel thermoelectric fibers. Journal of Materials Science, 2020, 55, 8376-8387.	1.7	31
40	One-step template-free electrodeposition of novel poly(indole-7-carboxylic acid) nanowires and their high capacitance properties. RSC Advances, 2015, 5, 3215-3223.	1.7	30
41	High-performance flexible-film supercapacitors of layered hydrous RuO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) through vacuum filtration. Electrochimica Acta, 2018, 283, 744-754.	2.6	30
42	Low-potential electrochemical polymerization of fluorene and its alkyl-polymer precursor. Electrochimica Acta, 2006, 51, 4771-4779.	2.6	29
43	Electrosyntheses of high quality poly (5-cyanoindole) films in boron trifluoride diethyl etherate containing additional diethyl ether. Materials Chemistry and Physics, 2006, 99, 341-349.	2.0	29
44	Enhanced electrocatalytic performance for isopropanol oxidation on Pd–Au nanoparticles dispersed on poly(p-phenylene) prepared from biphenyl. Materials Chemistry and Physics, 2010, 123, 390-395.	2.0	29
45	Effect of sodium silicate pretreatment on phosphate layer: Morphology and corrosion resistance behavior. Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63, 317-322.	0.8	29
46	Design and electrosynthesis of monolayered MoS2 and BF4â^'-doped poly(3,4-ethylenedioxythiophene) nanocomposites for enhanced supercapacitive performance. Journal of Electroanalytical Chemistry, 2017, 801, 345-353.	1.9	29
47	Graphene/Polymer Hybrid Fiber with Enhanced Fracture Elongation for Thermoelectric Energy Harvesting. ACS Applied Energy Materials, 2020, 3, 6165-6171.	2.5	29
48	Electrosyntheses of high quality poly (5-nitroindole) films. Materials Letters, 2005, 59, 2412-2417.	1.3	28
49	Functionalized Poly(3,4-ethylenedioxy bithiophene) Films for Tuning Electrochromic and Thermoelectric Properties. Journal of Physical Chemistry B, 2017, 121, 9281-9290.	1.2	28
50	Alkyl functionalized bithiophene end-capped with 3,4-ethylenedioxythiophene units: synthesis, electropolymerization and the capacitive properties of their polymers. Electrochimica Acta, 2015, 151, 477-488.	2.6	27
51	Organic/Inorganic Hybrid Boosting Energy Harvesting Based on the Photothermoelectric Effect. ACS Applied Materials & Interfaces, 2021, 13, 43155-43162.	4.0	27
52	High-operating-voltage all-solid-state symmetrical supercapacitors based on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films treated by organic solvents. Electrochimica Acta, 2016, 222, 1895-1902.	2.6	26
53	Capacitive performance of electrodeposited PEDOS and a comparative study with PEDOT. Electrochimica Acta, 2016, 220, 340-346.	2.6	25
54	Three-Dimensional Porous Carbon Derived from Polyindole Hollow Nanospheres for High-Performance Supercapacitor Electrode. ACS Applied Energy Materials, 2018, 1, 4572-4579.	2.5	25

#	Article	IF	CITATIONS
55	Electrochemical polymerization of phenanthrene in mixed electrolytes of boron trifluoride diethyl etherate and concentrated sulfuric acid. Polymer International, 2008, 57, 92-98.	1.6	24
56	Effects of second dopants on electrical conductivity and thermopower of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-filled carbon black. Materials Chemistry and Physics, 2015, 153, 285-290.	2.0	24
57	PEDOT:PSS-assisted polyindole hollow nanospheres modified carbon cloth as high performance electrochemical capacitor electrodes. Electrochimica Acta, 2016, 212, 662-670.	2.6	24
58	Transparent 1T-MoS ₂ nanofilm robustly anchored on substrate by layer-by-layer self-assembly and its ultra-high cycling stability as supercapacitors. Nanotechnology, 2017, 28, 395401.	1.3	24
59	Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors. Frontiers of Materials Science, 2020, 14, 109-119.	1.1	24
60	Organic-inorganic hybrid electrode engineering for high-performance asymmetric supercapacitor based on WO3-CeO2 nanowires with oxygen vacancies. Applied Surface Science, 2022, 573, 151624.	3.1	23
61	Electrochemical and spectroscopic characteristics of copolymers electrochemically synthesized from 3-(4-fluorophenyl)thiophene and 3,4-ethylenedioxythiophene. Journal of Materials Science, 2006, 41, 3923-3930.	1.7	22
62	One-step electrodeposition of free-standing flexible conducting PEDOT derivative film and its electrochemical capacitive and thermoelectric performance. Electrochimica Acta, 2017, 224, 125-132.	2.6	22
63	Rare Earthâ€Based Nanomaterials for Supercapacitors: Preparation, Structure Engineering and Application. ChemSusChem, 2022, 15, .	3.6	21
64	core/shell structure composite and its high capacitance performance. Journal of Electroanalytical Chemistry, 2015, 743, 53-59.	1.9	20
65	Vertically Aligned Micropillar Arrays Coated with a Conductive Polymer for Advanced Pseudocapacitance Energy Storage. ACS Applied Materials & Interfaces, 2022, 14, 10805-10814.	4.0	20
66	High efficient electrooxidation of formic acid at a novel Pt–indole composite catalyst prepared by electrochemical self-assembly. Journal of Power Sources, 2011, 196, 1118-1122.	4.0	19
67	Alkyl chain engineering in the hybrid bithiophene-3,4-ethylenedioxythiophene: Synthesis, electronic properties, and electropolymerization. Synthetic Metals, 2014, 198, 19-30.	2.1	18
68	Electrochemical assembly of homogenized poly(3,4-ethylenedioxythiophene methanol)/SWCNT nano-networks and their high performances for supercapacitor electrodes. Ionics, 2020, 26, 3631-3642.	1.2	17
69	Electrosyntheses of Freestanding and Conducting Poly[poly(N-vinyl-carbazole)] Films in Tetrahydrofuran Containing Additional Boron Trifluoride Diethyl Etherate. Polymer Journal, 2006, 38, 369-375.	1.3	16
70	Facile template-free synthesis of pine needle-like Pd micro/nano-leaves and their associated electro-catalytic activities toward oxidation of formic acid. Nanoscale Research Letters, 2011, 6, 381.	3.1	16
71	Electrosynthesis and electrochemical capacitive behavior of a new nitrogen PEDOT analogue-based polymer electrode. New Journal of Chemistry, 2016, 40, 2304-2314.	1.4	16
72	Fluoro-substituted conjugated polyindole for desirable electrochemical charge storage materials. Electrochimica Acta, 2019, 320, 134641.	2.6	16

#	Article	IF	CITATIONS
73	High-efficiency electrodeposition of polyindole nanocomposite using MoS2 nanosheets as electrolytes and their capacitive performance. Arabian Journal of Chemistry, 2020, 13, 6061-6071.	2.3	16
74	A novel reusable platinum nanocatalyst. Materials Chemistry and Physics, 2010, 122, 10-14.	2.0	13
75	Free-standing poly[poly(N-vinyl carbazole)]-supported Pt-based catalysts with enhanced performance for methanol electro-oxidation in alkaline medium. Fuel, 2012, 102, 560-566.	3.4	13
76	The construction of hierarchical PEDOT@MoS2 nanocomposite for high-performance supercapacitor. Applied Surface Science, 2021, 546, 149088.	3.1	13
77	Low potential electrosyntheses of free-standing poly(dibenzofuran) films in mixed electrolytes of boron trifluoride diethyl etherate and trifluoroacetic acid. Journal of Polymer Science Part A, 2006, 44, 1125-1135.	2.5	12
78	Electrosyntheses of free-standing poly(dibenzo-18-crown-6) films in boron trifluoride diethyl etherate on stainless steel electrode. European Polymer Journal, 2008, 44, 656-664.	2.6	12
79	Supercapacitor properties of nanowire poly((3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-3-yl)methanol) free-supporting films. Electrochimica Acta, 2018, 283, 488-496.	2.6	12
80	Highly sensitive detection of 4-NP in real water with long stability and high anti-inteference ability based on GO–Ag2CrO4/GCE. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 128-136.	2.7	12
81	Self-Assembly of Reverse Micelles to Engineer PEDOT Nanoribbons, Nanotubes, Nanorods and their High Capacitance Performances. Journal of the Electrochemical Society, 2020, 167, 080538.	1.3	12
82	Morphogenesis of surface patterns and incorporation of redox-active metals in mesoporous silicate molecular sieves. Surface and Interface Analysis, 2001, 32, 193-197.	0.8	11
83	One‣tep Electrodeposition Method to Prepare Robust Flexible PEDOTâ€Based Films for Ultra‣table Supercapacitors. ChemElectroChem, 2018, 5, 1130-1136.	1.7	11
84	Highly efficient electrochemical energy storage of fluorinated nano-polyindoles with different morphology. Electrochimica Acta, 2020, 349, 136410.	2.6	11
85	Binder-free hierarchical porous N-doped graphene directly anchored on carbon fiber cloth for high-performance electrochemical energy storage. Journal of Energy Storage, 2020, 31, 101682.	3.9	11
86	Binder-Free and Flexible Carbon-Encapsulated Oxygen-Vacancy Cerium Dioxide Electrode for High-Performance Supercapacitor. Journal of the Electrochemical Society, 2021, 168, 010536.	1.3	11
87	Electrochemical self-assembled core/shell PEDOT@MoS2 composite with ultra-high areal capacitance for supercapacitor. Electrochimica Acta, 2021, 370, 137791.	2.6	11
88	Fishnetâ€Like, Nitrogenâ€Doped Carbon Films Directly Anchored on Carbon Cloths as Binderâ€Free Electrodes for Highâ€Performance Supercapacitor. Global Challenges, 2020, 4, 1900086.	1.8	11
89	Preparation of Platinumâ€Poly(<i>O</i> â€dihydroxybenzene) Composite Catalyst and Its Electrocatalytic Activity Toward Methanol and Formic Acid Oxidation. Fuel Cells, 2012, 12, 116-123.	1.5	10
90	Low potential electrodeposition of highâ€quality and freestanding poly(3â€(6â€bromohexyl)thiophene) films. Journal of Applied Polymer Science, 2008, 109, 1570-1576.	1.3	9

#	Article	IF	CITATIONS
91	Electrosyntheses of free-standing poly (dibenzofuran) films. Materials Letters, 2006, 60, 2569-2572.	1.3	8
92	Electrodeposition of high quality and freestanding poly(9,9â€dioctylfluoreneâ€ <i>co</i> â€ŧhiophene) films with good fluorescence properties. Journal of Applied Polymer Science, 2008, 108, 1924-1933.	1.3	8
93	Effect of polymerization solvent, potential, and temperature on morphology and capacitance properties of poly(thieno[3,2-b]thiophene) films. Synthetic Metals, 2016, 220, 155-161.	2.1	8
94	Using nitroaromatic fused-heterocycle molecules as nitrogen source to hugely boost the capacitance performance of graphene. Electrochimica Acta, 2020, 354, 136703.	2.6	8
95	Electrochemical preparation of nano-composites of poly(o-methoxyaniline) and carbon nanotubes. Journal of Materials Science, 2010, 45, 5795-5801.	1.7	7
96	Preparation of aqueous poly(3,4-ethylenedioxythiophene methanol)-poly(styrene sulfonate) dispersion and its capacitance performance as symmetric supercapacitors. Journal of Solid State Electrochemistry, 2015, 19, 3329-3338.	1.2	6
97	Electrochemical capacitive performance of free-standing polyindole film and effect of introducing alkyl chain connecting two indoles. Journal of Materials Science: Materials in Electronics, 2019, 30, 7850-7857.	1.1	6
98	Electron-beam-induced conduction in a ruthenium carbonyl nanoparticle polymer. Applied Physics Letters, 2000, 76, 1773-1775.	1.5	5
99	Synthesis and structure of biodegradable hexylene terephthalate-co-lactide copolyesters. Journal of Thermal Analysis and Calorimetry, 2009, 96, 307-313.	2.0	5
100	Synthesis, characterization and stability of multicore-shell CdS-SiO2 nanoparticles. Colloid Journal, 2010, 72, 158-162.	0.5	5
101	Large-scale free-template electrosynthesis of poly(2-chloromethyl-2,3-dihydrothieno[3,4- b) Tj ETQq1 1 0.784314	· rgBT /Ove	erlgck 10 Tf 3
102	Significantly boosting the energy storage capacity of N-doped graphene by non-covalent modification of fused heterocyclic small molecules. Materials Chemistry Frontiers, 2021, 5, 3073-3084.	3.2	5
103	Enhancing effect of boron trifluoride diethyl etherate electrolytes on capacitance performance of electropolymerized poly[poly(N-vinyl-carbazole)] films. Journal of Solid State Electrochemistry, 2017, 21, 81-90.	1.2	4
104	Highâ€quality freestanding flexible poly(5â€(2,3â€dihydrothieno[3,4â€ <i>b</i>][1,4]dioxinâ€5â€yl)â€1 <i>H</i> film: Electrosyntheses, characterization, and optical properties. Journal of Applied Polymer Science, 2019, 136, 47016.	â€indole) 1.3	4
105	Co-electrodeposited porous poplar flower-like poly(hydroxymethyl-3,4-ethylenedioxythiophene)/PEG/WS2 hybrid material for high-performance supercapacitor. Journal of Electroanalytical Chemistry, 2021, 891, 115261.	1.9	4
106	One-step hydrothermal synthesis of N-doped graphene/poly5-hydroxyindole composite materials for supercapacitor with ultra-long cycle stability and ultra-high energy storage performance. Journal of Energy Storage, 2021, 43, 103303.	3.9	4
107	HRTEM surface characterization of nanoscale solid-state materials. Surface and Interface Analysis, 2001, 32, 236-239.	0.8	3
108	Poly(thieno[3,4–b]–1,4–oxathiane): Effect of solvent on the chemical synthesis and capacitance comparison in different electrolytes. Electrochimica Acta, 2015, 184, 338-346.	2.6	3

#	Article	IF	CITATIONS
109	Electrochemical polymerization of <i>p</i> â€ŧerphenyl in mixed electrolyte of boron trifluoride diethyl etherate and CH ₂ Cl ₂ . Journal of Applied Polymer Science, 2010, 117, 2688-2694.	1.3	2
110	Freestanding flexible polymer films based on bridging of two EDOT units with functionalized chains for use in long-term-stable supercapacitors. New Journal of Chemistry, 2018, 42, 4824-4834.	1.4	2
111	High Stable Supercapacitors Based on Poly(2,3-dihydrothieno[3,4- <i>b</i>][1,4]dioxin-2-yl)methanol Nanonet@Nanotube Array by Template-Free Electrochemical Preparation. Journal of the Electrochemical Society, 2020, 167, 100548.	1.3	2
112	Carbon Nanotube and Polypyrrole Composites: Coating and Doping. , 2000, 12, 522.		2
113	One-Step Electrodeposition Method to Prepare Robust Flexible PEDOT-Based Films for Ultra-Stable Supercapacitors. ChemElectroChem, 2018, 5, 1124-1124.	1.7	1
114	Trifluoromethyl functionalized polyindoles: electrosynthesis, characterization, and improved capacitive performance. New Journal of Chemistry, 2020, 44, 8512-8519.	1.4	1
115	A simplified synthesis of 2-acetyl-1,4,5,8-tetramethoxynaphthalene and its selective demethylation product. Russian Journal of General Chemistry, 2016, 86, 2877-2880.	0.3	Ο