Jeong-In Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/222659/publications.pdf

Version: 2024-02-01

2258059 2053705 14 30 3 5 citations h-index g-index papers 14 14 14 19 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characteristic Analysis and Experimental Verification of Electromagnetic and Vibration/Noise Aspects of Fractional-Slot Concentrated Winding IPMSMs of e-Bike. Energies, 2022, 15, 238.	3.1	4
2	Design and Preliminary Experiments of a Rotating Armature Partial Superconducting Air-Core Generator. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	4
3	Experiments and Design Criteria for a High-Speed Permanent Magnet Synchronous Generator With Magnetic Bearing Considering Mechanical Aspects. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	3
4	Core-Loss Analysis of Linear Magnetic Gears Using the Analytical Method. Energies, 2021, 14, 2905.	3.1	3
5	Analytical Study and Comparison of Electromagnetic Characteristics of 8-Pole 9-Slot and 8-Pole 12-Slot Permanent Magnet Synchronous Machines Considering Rotor Eccentricity. Electronics (Switzerland), 2021, 10, 2036.	3.1	3
6	Design of the High-Speed PMSG with Two Different Shaft Material Considering Overhang Effect and Mechanical Characteristics. Applied Sciences (Switzerland), 2021, 11, 7670.	2.5	3
7	Design and Analysis Considering Magnet Usage of Permanent Magnet Synchronous Generator Using Analytical Method. Electronics (Switzerland), 2022, 11, 205.	3.1	3
8	Electromagnetic Performance Analysis and Experimental Verification Considering the End Effect of Linear Magnetic Gears Using Subdomain-Based Analytical Method. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	2
9	Design of high-speed permanent magnet synchronous machines considering thermal demagnetization and mechanical characteristic of permanent magnet. AIP Advances, 2021, 11, 025129.	1.3	2
10	Experimental and Comparative Study of Rotor Vibrations of Permanent Magnet Machines with Two Different Fractional Pole/Slot Combinations. Applied Sciences (Switzerland), 2020, 10, 8792.	2.5	1
11	Electro-Mechanical Characteristics Analysis and Experimental Study of PMSM According to Rotor Eccentricity. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	1
12	Experimental Verification and Analytical Approach for Electromagnetic Characteristics of a High-Speed Permanent Magnet Motor with Two Different Rotors and Winding Patterns. Applied Sciences (Switzerland), 2021, 11, 9060.	2.5	1
13	Characteristics analysis of a high-speed permanent magnet synchronous generator considering magnetic reactance derived from short circuit analysis. AIP Advances, 2019, 9, 125337.	1.3	O
14	Design criteria and experiments considering the mechanical characteristics of high-speed permanent magnet synchronous generator of 8kW and 40krpm class. AIP Advances, 2019, 9, 125319.	1.3	0