
Xiaobin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2226489/publications.pdf Version: 2024-02-01

XLAORIN WANC

#	Article	IF	CITATIONS
1	An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. Journal of Membrane Science, 2019, 569, 117-123.	8.2	87
2	Preparation of titanium silicalite-1 catalytic films and application as catalytic membrane reactors. Chemical Engineering Journal, 2010, 156, 562-570.	12.7	77
3	Preparation and properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds. Chemical Engineering Journal, 2009, 147, 316-322.	12.7	68
4	Investigating the Role of Zeolite Nanocrystal Seeds in the Synthesis of Mesoporous Catalysts with Zeolite Wall Structure. Chemistry of Materials, 2011, 23, 4469-4479.	6.7	66
5	Performance of TS-1-Coated Structured Packing Materials for Styrene Oxidation Reaction. ACS Catalysis, 2011, 1, 437-445.	11.2	55
6	Catalytic properties of benzene hydroxylation by TS-1 film reactor and Pd–TS-1 composite membrane reactor. Catalysis Today, 2010, 156, 288-294.	4.4	51
7	Preparation and performance of TS-1/SiO2 egg-shell catalysts. Chemical Engineering Journal, 2011, 175, 408-416.	12.7	45
8	Formation of continuous and highly permeable ZIF-8 membranes on porous alumina and zinc oxide hollow fibers. Chemical Communications, 2016, 52, 13448-13451.	4.1	42
9	A novel approach for the preparation of highly stable Pd membrane on macroporous α-Al2O3 tube. Journal of Membrane Science, 2010, 362, 241-248.	8.2	35
10	Direct Hydroxylation of Benzene to Phenol Using Palladium–Titanium Silicalite Zeolite Bifunctional Membrane Reactors. Industrial & Engineering Chemistry Research, 2014, 53, 5636-5645.	3.7	31
11	TS-1 zeolite as an effective diffusion barrier for highly stable Pd membrane supported on macroporous α-Al2O3 tube. RSC Advances, 2013, 3, 4821.	3.6	28
12	A simple seed-embedded method to prepare ZIF-8 membranes supported on flexible PESf hollow fibers. Journal of Industrial and Engineering Chemistry, 2019, 72, 222-231.	5.8	25
13	Investigation of Pd membrane reactors for one-step hydroxylation of benzene to phenol. Catalysis Today, 2012, 193, 151-157.	4.4	24
14	Dual-layer BaCe0.8Y0.2O3-δ-Ce0.8Y0.2O2-δ/BaCe0.8Y0.2O3-δ-Ni hollow fiber membranes for H2 separation. Journal of Membrane Science, 2020, 601, 117801.	8.2	23
15	SrCe _{0.95} Y _{0.05} O _{3â^ʾδ} –ZnO dual-phase membranes for hydrogen permeation. RSC Advances, 2016, 6, 36786-36793.	3.6	21
16	A dual-layer ZnO–Al2O3 hollow fiber for directly inducing the formation of ZIF membrane. Journal of Membrane Science, 2021, 640, 119851.	8.2	21
17	One-step hydroxylation of benzene to phenol via a Pd capillary membrane microreactor. Catalysis Science and Technology, 2013, 3, 2380.	4.1	18
18	Hydrogen permeation performance of dual-phase protonic-electronic conducting ceramic membrane with regular and independent transport channels. Separation and Purification Technology, 2019, 213, 515-523.	7.9	18

XIAOBIN WANG

#	Article	IF	CITATIONS
19	Preparation of ZIF-8 Membranes on Porous ZnO Hollow Fibers by a Facile ZnO-Induced Method. Industrial & Engineering Chemistry Research, 2020, 59, 15576-15585.	3.7	18
20	ZIF-67 membranes supported on porous ZnO hollow fibers for hydrogen separation from gas mixtures. Journal of Membrane Science, 2022, 653, 120550.	8.2	17
21	Catalytic palladium membrane reactors for one-step benzene hydroxylation to phenol. Journal of Membrane Science, 2018, 563, 864-872.	8.2	16
22	Pd–silicalite-1 composite membrane reactor for direct hydroxylation of benzene to phenol. Catalysis Today, 2010, 156, 282-287.	4.4	14
23	Growth of ZIF-8 Membranes on Ceramic Hollow Fibers by Conversion of Zinc Oxide Particles. Industrial & Engineering Chemistry Research, 2019, 58, 19511-19518.	3.7	12
24	Vacuum-assisted continuous flow electroless plating approach for high performance Pd membrane deposition on ceramic hollow fiber lumen. Journal of Membrane Science, 2022, 645, 120207.	8.2	12
25	Modified high-efficiency carbon material for deep degradation of phenol by activating persulfate. Chemosphere, 2022, 298, 134135.	8.2	12
26	Influence of silicalite-1 nanoparticle seeds on the synthesis of Ti-containing mesoporous zeolites. Chemical Engineering Journal, 2016, 289, 494-501.	12.7	10
27	Asymmetric nickel hollow fibres as the catalytic membrane reactor for CO ₂ hydrogenation into syngas. Chemical Communications, 2019, 55, 4226-4229.	4.1	8
28	A simple embedded-seeding method to prepare silicalite-1 membrane on porous α-Al 2 O 3 hollow fibers. Materials Letters, 2017, 194, 122-125.	2.6	6
29	A Pd–TSH composite membrane reactor for one-step oxidation of benzene to phenol. Chemical Communications, 2019, 55, 7745-7748.	4.1	5
30	CO ₂ and Steam-Assisted H ₂ Separation through BaCe _{0.8} Y _{0.2} O _{3â~î^} –Ce _{0.8} Y _{0.2} O _{2â~î^< Hollow Fiber Membranes. Energy & Fuels, 2020, 34, 683-689.}	:/s@rp>	5
31	Synthesis of stable Ti-containing mesoporous tubular membrane using silicalite-1 nanoparticles as seeds. Chemical Engineering Journal, 2014, 255, 344-355.	12.7	4