Winfried Mayr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2226132/publications.pdf

Version: 2024-02-01

430874 377865 1,213 43 18 34 citations g-index h-index papers 44 44 44 1210 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highlights from the IFESS 2021 conferences. Artificial Organs, 2022, 46, 521-524.	1.9	o
2	Selective Electrical Surface Stimulation to Support Functional Recovery in the Early Phase After Unilateral Acute Facial Nerve or Vocal Fold Paralysis. Frontiers in Neurology, 2022, 13, 869900.	2.4	7
3	Post-meeting report of the 2022 On-site Padua Days on Muscle and Mobility Medicine, March 30 - April 3, 2022, Padua, Italy. European Journal of Translational Myology, 2022, 32, .	1.7	7
4	Comparison of voice therapy and selective electrical stimulation of the larynx in early unilateral vocal fold paralysis after thyroid surgery: A retrospective data analysis. Clinical Otolaryngology, 2021, 46, 530-537.	1.2	5
5	Neurophysiology of epidurally evoked spinal cord reflexes in clinically motor-complete posttraumatic spinal cord injury. Experimental Brain Research, 2021, 239, 2605-2620.	1.5	4
6	A biomechanical in-vitro study on an alternative fixation technique of the pubic symphysis for open book injuries of the pelvis Injury, 2021 , , .	1.7	1
7	Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. Journal of Neurotrauma, 2020, 37, 481-493.	3.4	87
8	Pull-out forces of headless compression screws in variations of synthetic bone models imitating different types of scaphoid fractures in good bone quality. Journal of Materials Science: Materials in Medicine, 2020, 31, 92.	3.6	2
9	Wrist movements induce torque and lever force in the scaphoid: an ex vivo study. Journal of Orthopaedic Surgery and Research, 2020, 15, 368.	2.3	2
10	Bipolar transcutaneous spinal stimulation evokes short-latency reflex responses in human lower limbs alike standard unipolar electrode configuration. Journal of Neurophysiology, 2020, 124, 1072-1082.	1.8	5
11	Objectivation of laryngeal electromyography (LEMG) data: turn number vs. qualitative analysis. European Archives of Oto-Rhino-Laryngology, 2020, 277, 1409-1415.	1.6	4
12	QCT-based finite element prediction of pathologic fractures in proximal femora with metastatic lesions. Scientific Reports, 2019, 9, 10305.	3.3	28
13	HRV (Heart Rate Variability) as a non-invasive measurement method for performance diagnostics and training control. Current Directions in Biomedical Engineering, 2019, 5, 97-100.	0.4	2
14	Bionic hand as artificial organ: Current status and future perspectives. Artificial Organs, 2019, 43, 109-118.	1.9	20
15	Sub-threshold depolarizing pre-pulses can enhance the efficiency of biphasic stimuli in transcutaneous neuromuscular electrical stimulation. Medical and Biological Engineering and Computing, 2018, 56, 2213-2219.	2.8	4
16	Effect of simulated metastatic lesions on the biomechanical behavior of the proximal femur. Journal of Orthopaedic Research, 2017, 35, 2407-2414.	2.3	27
17	Optimization of Interphase Intervals to Enhance the Evoked Muscular Responses of Transcutaneous Neuromuscular Electrical Stimulation. Artificial Organs, 2017, 41, 1145-1152.	1.9	9
18	Functional Electrical Stimulation. Artificial Organs, 2017, 41, 977-978.	1.9	2

#	Article	IF	Citations
19	Rotational Stability of Scaphoid Osteosyntheses: An In Vitro Comparison of Small Fragment Cannulated Screws to Novel Bone Screw Sets. PLoS ONE, 2016, 11, e0156080.	2.5	11
20	Body Position Influences Which Neural Structures Are Recruited by Lumbar Transcutaneous Spinal Cord Stimulation. PLoS ONE, 2016, 11, e0147479.	2.5	64
21	Effects of sustained electrical stimulation on spasticity assessed by the pendulum test. Current Directions in Biomedical Engineering, 2016, 2, 405-407.	0.4	5
22	In vitro experimental investigation of the forces and torque acting on the scaphoid during light grasp. Journal of Orthopaedic Research, 2016, 34, 1734-1742.	2.3	4
23	Epidural and transcutaneous spinal electrical stimulation for restoration of movement after incomplete and complete spinal cord injury. Current Opinion in Neurology, 2016, 29, 721-726.	3.6	40
24	Motor Control of Human Spinal Cord Disconnected from the Brain and Under External Movement. Advances in Experimental Medicine and Biology, 2016, 957, 159-171.	1.6	9
25	The insufficiencies of risk analysis of impending pathological fractures in patients with femoral metastases: A literature review. Bone Reports, 2016, 5, 51-56.	0.4	35
26	Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord–Injured Individuals. Neurorehabilitation and Neural Repair, 2016, 30, 233-243.	2.9	98
27	A finite element analysis of two novel screw designs for scaphoid waist fractures. Medical Engineering and Physics, 2016, 38, 131-139.	1.7	20
28	Human Spinal Cord Motor Control That is Partially or Completely Disconnected from the Brain. American Journal of Neuroprotection and Neuroregeneration, 2016, 8, 12-26.	0.1	2
29	Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord. Journal of Neurophysiology, 2015, 114, 400-410.	1.8	65
30	Neurocontrol of Movement in Humans With Spinal Cord Injury. Artificial Organs, 2015, 39, 823-833.	1.9	39
31	Comparison of Twitch Responses During Current―or Voltageâ€Controlled Transcutaneous Neuromuscular Electrical Stimulation. Artificial Organs, 2015, 39, 868-875.	1.9	9
32	Herwig Thoma, PhD: Pioneer in Artificial Heart and Functional Electrical Stimulation. Artificial Organs, 2015, 39, 645-646.	1.9	0
33	In Vitro Testing of an Implantable Wireless Telemetry System for Long-Term Electromyography Recordings in Large Animals. Artificial Organs, 2015, 39, 897-902.	1.9	4
34	Physical exercise in Aging: Nine weeks of leg press or electrical stimulation training in 70 years old sedentary elderly people. European Journal of Translational Myology, 2015, 25, 237.	1.7	67
35	Physical activity in elderly. European Journal of Translational Myology, 2015, 25, 249.	1.7	68
36	Neuromuscular electrical stimulation for mobility support of elderly. European Journal of Translational Myology, 2015, 25, 263.	1.7	11

#	Article	IF	CITATIONS
37	Dynamic Impedance Model of the Skin-Electrode Interface for Transcutaneous Electrical Stimulation. PLoS ONE, 2015, 10, e0125609.	2.5	39
38	Human spinal locomotor control is based on flexibly organized burst generators. Brain, 2015, 138, 577-588.	7.6	139
39	Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor″ncomplete Spinal Cord″njured Individuals. Artificial Organs, 2015, 39, E176-86.	1.9	112
40	Multiâ€Electrode Array for Transcutaneous Lumbar Posterior Root Stimulation. Artificial Organs, 2015, 39, 834-840.	1.9	25
41	Electrical Stimulation Counteracts Muscle Decline in Seniors. Frontiers in Aging Neuroscience, 2014, 6, 189.	3.4	128
42	Non-invasive transcutaneous stimulation of the human lumbar spinal cord facilitates locomotor output in spinal cord injury. Biomedizinische Technik, 2012, 57, .	0.8	0
43	Clinical application of an eight channel stimulation system for mobilization of individuals with paraplegia: First results. Technology and Disability, 2005, 17, 85-92.	0.6	2