Julie Constantin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2225732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of cover crop on water and nitrogen balances and cash crop yield in a temperate climate: A modelling approach using the STICS soil-crop model. European Journal of Agronomy, 2022, 132, 126416.	4.1	7
2	A modelling chain combining soft and hard models to assess a bundle of ecosystem services provided by a diversity of cereal-legume intercrops. European Journal of Agronomy, 2022, 132, 126412.	4.1	7
3	Evaluating the impact of using digital soil mapping products as input for spatializing a crop model: The case of drainage and maize yield simulated by STICS in the Berambadi catchment (India). Geoderma, 2022, 406, 115503.	5.1	5
4	A surrogate model based on feature selection techniques and regression learners to improve soybean yield prediction in southern France. Computers and Electronics in Agriculture, 2022, 192, 106578.	7.7	17
5	Incorporating energy cover crops for biogas production into agricultural systems: benefits and environmental impacts. A review. Agronomy for Sustainable Development, 2022, 42, .	5.3	9
6	Introducing and expanding cover crops at the watershed scale: Impact on water flows. Agriculture, Ecosystems and Environment, 2022, 337, 108050.	5.3	3
7	Estimating the carbon storage potential and greenhouse gas emissions of French arable cropland using highâ€resolution modeling. Global Change Biology, 2021, 27, 1645-1661.	9.5	41
8	A method to assess the impact of soil available water capacity uncertainty on crop models with a tippingâ€bucket approach. European Journal of Soil Science, 2020, 71, 369-381.	3.9	4
9	Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change. European Journal of Agronomy, 2020, 113, 125972.	4.1	49
10	Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models. Field Crops Research, 2020, 255, 107863.	5.1	23
11	AqYield-N: A simple model to predict nitrogen leaching from crop fields. Agricultural and Forest Meteorology, 2020, 284, 107890.	4.8	6
12	Cover crops reduce drainage but not always soil water content due to interactions between rainfall distribution and management. Agricultural Water Management, 2020, 231, 105998.	5.6	28
13	Management and spatial resolution effects on yield and water balance at regional scale in crop models. Agricultural and Forest Meteorology, 2019, 275, 184-195.	4.8	22
14	Will climate change affect sugar beet establishment of the 21st century? Insights from a simulation study using a crop emergence model. Field Crops Research, 2019, 238, 64-73.	5.1	11
15	Simulation of maize evapotranspiration: An inter-comparison among 29 maize models. Agricultural and Forest Meteorology, 2019, 271, 264-284.	4.8	62
16	Modeling Cropping Systems with HERMES-Model Capability, Deficits and Data Requirements. Advances in Agricultural Systems Modeling, 2019, , 103-126.	0.3	1
17	Effects of input data aggregation on simulated crop yields in temperate and Mediterranean climates. European Journal of Agronomy, 2019, 103, 32-46.	4.1	16
18	Cover crops reduce water drainage in temperate climates: A meta-analysis. Agronomy for Sustainable Development, 2019, 39, 1.	5.3	49

JULIE CONSTANTIN

#	Article	IF	CITATIONS
19	Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Global Change Biology, 2018, 24, 2513-2529.	9.5	41
20	Analysis and modeling of cover crop emergence: Accuracy of a static model and the dynamic STICS soil-crop model. European Journal of Agronomy, 2018, 93, 73-81.	4.1	25
21	How to Address the Sustainability Transition of Farming Systems? A Conceptual Framework to Organize Research. Sustainability, 2018, 10, 2083.	3.2	27
22	Predicting water balance of wheat and crop rotations with a simple model: AqYield. Agricultural and Forest Meteorology, 2018, 262, 412-422.	4.8	6
23	Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands. European Journal of Agronomy, 2017, 88, 41-52.	4.1	27
24	Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe. European Journal of Agronomy, 2017, 84, 152-165.	4.1	35
25	Performance of process-based models for simulation of grain N in crop rotations across Europe. Agricultural Systems, 2017, 154, 63-77.	6.1	43
26	The implication of input data aggregation on up-scaling soil organic carbon changes. Environmental Modelling and Software, 2017, 96, 361-377.	4.5	28
27	Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations. PLoS ONE, 2016, 11, e0151782.	2.5	78
28	Virtual modeling based on deep phenotyping provides complementary data to field experiments to predict plant emergence in oilseed rape genotypes. European Journal of Agronomy, 2016, 79, 90-99.	4.1	18
29	Spatial sampling of weather data for regional crop yield simulations. Agricultural and Forest Meteorology, 2016, 220, 101-115.	4.8	35
30	Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Environmental Modelling and Software, 2016, 80, 100-112.	4.5	26
31	Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France. Environmental Modelling and Software, 2015, 64, 177-190.	4.5	147
32	Large-scale assessment of optimal emergence and destruction dates for cover crops to reduce nitrate leaching in temperate conditions using the STICS soil–crop model. European Journal of Agronomy, 2015, 69, 75-87.	4.1	35
33	Catch crop emergence success depends on weather and soil seedbed conditions in interaction with sowing date: A simulation study using the SIMPLE emergence model. Field Crops Research, 2015, 176, 22-33.	5.1	42
34	The soil-crop models STICS and AqYield predict yield and soil water content for irrigated crops equally well with limited data. Agricultural and Forest Meteorology, 2015, 206, 55-68.	4.8	53
35	Crop rotation modelling—A European model intercomparison. European Journal of Agronomy, 2015, 70, 98-111.	4.1	125
36	Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables. Climate Research, 2015, 65, 141-157.	1.1	43

JULIE CONSTANTIN

#	Article	IF	CITATIONS
37	Variability of effects of spatial climate data aggregation on regional yield simulation by crop models. Climate Research, 2015, 65, 53-69.	1.1	39
38	Long-term nitrogen dynamics in various catch crop scenarios: Test and simulations with STICS model in a temperate climate. Agriculture, Ecosystems and Environment, 2012, 147, 36-46.	5.3	86
39	Cumulative effects of catch crops on nitrogen uptake, leaching and net mineralization. Plant and Soil, 2011, 341, 137-154.	3.7	81
40	Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agriculture, Ecosystems and Environment, 2010, 135, 268-278.	5.3	246
41	Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environmental and Experimental Botany, 2010, 67, 451-459.	4.2	124
42	Effect of carbon assimilation on dry weight production and partitioning during vegetative growth. Plant and Soil, 2009, 324, 329-343.	3.7	40