
Huicheng Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2225554/publications.pdf Version: 2024-02-01

HUICHENC HU

#	Article	IF	CITATIONS
1	Fabricating MAPbl ₃ /MoS ₂ Composites for Improved Photocatalytic Performance. Nano Letters, 2021, 21, 597-604.	9.1	60
2	Highly Stable CsPbBr ₃ Colloidal Nanocrystal Clusters as Photocatalysts in Polar Solvents. ACS Applied Materials & Interfaces, 2021, 13, 4017-4025.	8.0	31
3	Atomic-Resolution Imaging and Spectroscopy of Functionalized MXene Nanosheets. Microscopy and Microanalysis, 2020, 26, 2328-2330.	0.4	0
4	Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369, 979-983.	12.6	870
5	Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1281-1286.	10.3	181
6	L-Type Ligand-Assisted Acid-Free Synthesis of CsPbBr ₃ Nanocrystals with Near-Unity Photoluminescence Quantum Yield and High Stability. Nano Letters, 2019, 19, 4151-4157.	9.1	177
7	Fabricating CsPbX ₃ -Based Type I and Type II Heterostructures by Tuning the Halide Composition of Janus CsPbX ₃ /ZrO ₂ Nanocrystals. ACS Nano, 2019, 13, 5366-5374.	14.6	147
8	An etching–redeposition isomerization process for the shape control of anatase TiO2 nanocrystals. Materials Chemistry Frontiers, 2019, 3, 874-880.	5.9	3
9	Interfacial Synthesis of Monodisperse CsPbBr ₃ Nanorods with Tunable Aspect Ratio and Clean Surface for Efficient Light-Emitting Diode Applications. Chemistry of Materials, 2019, 31, 1575-1583.	6.7	78
10	Solvothermal synthesis of cesium lead halide nanocrystals with controllable dimensions: a stoichiometry defined growth mechanism. Journal of Materials Chemistry C, 2019, 7, 14493-14498.	5.5	23
11	Consecutive Interfacial Transformation of Cesium Lead Halide Nanocubes to Ultrathin Nanowires with Improved Stability. ACS Applied Materials & amp; Interfaces, 2019, 11, 3351-3359.	8.0	27
12	Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy, 2018, 47, 235-242.	16.0	154
13	Facetâ€Selective Deposition of Metal (M=Au, Pt, Pd) Nanoparticles on Co ₃ O ₄ Crystals: Magnetically Separable Photocatalyst with Improved Catalytic Performance. ChemPlusChem, 2018, 83, 334-338.	2.8	11
14	Highâ€Yield Synthesis of Au@Ag Right Bipyramids and Selfâ€Assembly into Four‣eafâ€Cloverâ€ŀike Structures. Particle and Particle Systems Characterization, 2018, 35, 1700114.	2.3	8
15	Solvothermal Synthesis of Alloyed PtNi Colloidal Nanocrystal Clusters (CNCs) with Enhanced Catalytic Activity for Methanol Oxidation. Advanced Functional Materials, 2018, 28, 1704774.	14.9	126
16	Interfacial Synthesis of Highly Stable CsPbX ₃ /Oxide Janus Nanoparticles. Journal of the American Chemical Society, 2018, 140, 406-412.	13.7	348
17	Fully Alloying AuAg Nanorods in a Photothermal Nano-Oven: Superior Plasmonic Property and Enhanced Chemical Stability. ACS Omega, 2018, 3, 18623-18629.	3.5	10
18	Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy, 2018, 53, 559-566.	16.0	45

Ниіснемс Ни

#	Article	IF	CITATIONS
19	One-Pot Synthesis of Highly Stable CsPbBr ₃ @SiO ₂ Core–Shell Nanoparticles. ACS Nano, 2018, 12, 8579-8587.	14.6	447
20	Cs ₄ PbX ₆ (X = Cl, Br, I) Nanocrystals: Preparation, Water-Triggered Transformation Behavior, and Anti-Counterfeiting Application. Langmuir, 2018, 34, 10363-10370.	3.5	53
21	Solvothermal Synthesis of Highâ€Quality Allâ€Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire. Advanced Functional Materials, 2017, 27, 1701121.	14.9	283
22	High-Yield Synthesis of Janus Dendritic Mesoporous Silica@Resorcinol–Formaldehyde Nanoparticles: A Competing Growth Mechanism. Langmuir, 2017, 33, 5269-5274.	3.5	22
23	Synthesis of Janus Au@periodic mesoporous organosilica (PMO) nanostructures with precisely controllable morphology: a seed-shape defined growth mechanism. Nanoscale, 2017, 9, 4826-4834.	5.6	42
24	High-yield colloidal synthesis of monometallic Au nanorod–Au nanoparticle dimers and their application in SERS. RSC Advances, 2017, 7, 12322-12328.	3.6	7
25	Improving the Stability and Size Tunability of Cesium Lead Halide Perovskite Nanocrystals Using Trioctylphosphine Oxide as the Capping Ligand. Langmuir, 2017, 33, 12689-12696.	3.5	165
26	Microwave-assisted synthesis of high-quality "all-inorganic―CsPbX ₃ (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 10947-10954.	5.5	180
27	From Nonluminescent Cs ₄ PbX ₆ (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX ₃ Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism. Nano Letters, 2017, 17, 5799-5804.	9.1	367
28	Reversible and Precise Self-Assembly of Janus Metal-Organosilica Nanoparticles through a Linker-Free Approach. ACS Nano, 2016, 10, 7323-7330.	14.6	95
29	Halide-free synthesis of Au nanoplates and monitoring the shape evolution process through a marker experiment. Journal of Materials Chemistry C, 2016, 4, 6457-6460.	5.5	14
30	A simple approach to the synthesis of eccentric Au@SiO2 Janus nanostructures and their catalytic applications. Surface Science, 2016, 648, 313-318.	1.9	18