
Tatsuo Matsunaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2225546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: a cross-sectional, multi-center next-generation sequencing study. Orphanet Journal of Rare Diseases, 2013, 8, 172.	2.7	84
2	Clinical features of patients with GJB2 (connexin 26) mutations: severity of hearing loss is correlated with genotypes and protein expression patterns. Journal of Human Genetics, 2005, 50, 76-83.	2.3	79
3	Mesenchymal Stem Cell Transplantation Accelerates Hearing Recovery through the Repair of Injured Cochlear Fibrocytes. American Journal of Pathology, 2007, 171, 214-226.	3.8	77
4	A prevalent founder mutation and genotype–phenotype correlations of <i>OTOF</i> in Japanese patients with auditory neuropathy. Clinical Genetics, 2012, 82, 425-432.	2.0	68
5	ClinGen expert clinical validity curation of 164 hearing loss gene–disease pairs. Genetics in Medicine, 2019, 21, 2239-2247.	2.4	67
6	High prevalence of inner-ear and/or internal auditory canal malformations in children with unilateral sensorineural hearing loss. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 228-232.	1.0	64
7	Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Reports, 2017, 18, 68-81.	6.4	63
8	Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel. Genetics in Medicine, 2019, 21, 2442-2452.	2.4	56
9	Cochlear Nerve Deficiency and Associated Clinical Features in Patients With Bilateral and Unilateral Hearing Loss. Otology and Neurotology, 2013, 34, 554-558.	1.3	52
10	Nationwide epidemiological survey of idiopathic sudden sensorineural hearing loss in Japan. Acta Oto-Laryngologica, 2017, 137, S8-S16.	0.9	52
11	A novel animal model of acute cochlear mitochondrial dysfunction. NeuroReport, 2004, 15, 1597-1600.	1.2	50
12	GJB2-associated hearing loss undetected by hearing screening of newborns. Gene, 2013, 532, 41-45.	2.2	41
13	Permanent Threshold Shift Caused by Acute Cochlear Mitochondrial Dysfunction Is Primarily Mediated by Degeneration of the Lateral Wall of the Cochlea. Audiology and Neuro-Otology, 2005, 10, 220-233.	1.3	40
14	Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans. PLoS Genetics, 2020, 16, e1008643.	3.5	36
15	High prevalence of CDH23 mutations in patients with congenital high-frequency sporadic or recessively inherited hearing loss. Orphanet Journal of Rare Diseases, 2015, 10, 60.	2.7	34
16	A Novel Animal Model of Hearing Loss Caused by Acute Endoplasmic Reticulum Stress in the Cochlea. Journal of Pharmacological Sciences, 2012, 118, 363-372.	2.5	33
17	Value of Genetic Testing in the Otological Approach for Sensorineural Hearing Loss. Keio Journal of Medicine, 2009, 58, 216-222.	1.1	32
18	Clinically diverse phenotypes and genotypes of patients with branchio-oto-renal syndrome. Journal of Human Genetics, 2018, 63, 647-656.	2.3	31

TATSUO MATSUNAGA

#	Article	IF	CITATIONS
19	Idiopathic sudden sensorineural hearing loss and acute low-tone sensorineural hearing loss: a comparison of the results of a nationwide epidemiological survey in Japan. Acta Oto-Laryngologica, 2017, 137, S38-S43.	0.9	30
20	Deafness Due to A1555G Mitochondrial Mutation Without Use of Aminoglycoside. Laryngoscope, 2004, 114, 1085-1091.	2.0	27
21	Pharmacological Inhibition of Cochlear Mitochondrial Respiratory Chain Induces Secondary Inflammation in the Lateral Wall: A Potential Therapeutic Target for Sensorineural Hearing Loss. PLoS ONE, 2014, 9, e90089.	2.5	26
22	The clinical features and prognosis of mumps-associated hearing loss: a retrospective, multi-institutional investigation in Japan. Acta Oto-Laryngologica, 2017, 137, S44-S47.	0.9	25
23	The effect of initial treatment on hearing prognosis in idiopathic sudden sensorineural hearing loss: a nationwide survey in Japan. Acta Oto-Laryngologica, 2017, 137, S30-S33.	0.9	25
24	Subgroups of enlarged vestibular aqueduct in relation to <i>SLC26A4</i> mutations and hearing loss. Laryngoscope, 2014, 124, E134-40.	2.0	24
25	Caspase inhibitor facilitates recovery of hearing by protecting the cochlear lateral wall from acute cochlear mitochondrial dysfunction. Journal of Neuroscience Research, 2008, 86, 215-222.	2.9	23
26	A mutation in the heparin-binding site of noggin as a novel mechanism of proximal symphalangism and conductive hearing loss. Biochemical and Biophysical Research Communications, 2014, 447, 496-502.	2.1	23
27	Epidemiological survey of acute low-tone sensorineural hearing loss. Acta Oto-Laryngologica, 2017, 137, S34-S37.	0.9	22
28	Clinical Course of Hearing and Language Development in <i>GJB2</i> and Non- <i>GJB2 </i> Deafness following Habilitation with Hearing Aids. Audiology and Neuro-Otology, 2006, 11, 59-68.	1.3	21
29	Phenotypic consequences in a Japanese family having branchio-oto-renal syndrome with a novel frameshift mutation in the geneEYA1. Acta Oto-Laryngologica, 2007, 127, 98-104.	0.9	21
30	Enhanced expression of C/EBP homologous protein (CHOP) precedes degeneration of fibrocytes in the lateral wall after acute cochlear mitochondrial dysfunction induced by 3-nitropropionic acid. Neurochemistry International, 2010, 56, 487-494.	3.8	21
31	Expression of <i>Pou3f3</i> / <i>Brnâ€1</i> and its genomic methylation in developing auditory epithelium. Developmental Neurobiology, 2009, 69, 913-930.	3.0	20
32	A novel nonsense mutation in the NOG gene causes familial NOG-related symphalangism spectrum disorder. Human Genome Variation, 2016, 3, 16023.	0.7	20
33	IMSindel: An accurate intermediate-size indel detection tool incorporating de novo assembly and gapped global-local alignment with split read analysis. Scientific Reports, 2018, 8, 5608.	3.3	20
34	Mitochondrial mutations in maternally inherited hearing loss. BMC Medical Genetics, 2017, 18, 32.	2.1	19
35	Prevalence of TECTA mutation in patients with mid-frequency sensorineural hearing loss. Orphanet Journal of Rare Diseases, 2017, 12, 157.	2.7	19
36	Disease-specific ACMG/AMP guidelines improve sequence variant interpretation for hearing loss. Genetics in Medicine, 2021, 23, 2208-2212.	2.4	18

TATSUO MATSUNAGA

#	Article	IF	CITATIONS
37	Homozygous EDNRB mutation in a patient with Waardenburg syndrome type 1. Auris Nasus Larynx, 2018, 45, 222-226.	1.2	17
38	A clinical and genetic study of 16 Japanese families with Waardenburg syndrome. Gene, 2019, 704, 86-90.	2.2	17
39	Estimating the concentration of therapeutic range using disease-specific iPS cells: Low-dose rapamycin therapy for Pendred syndrome. Regenerative Therapy, 2019, 10, 54-63.	3.0	17
40	Deterioration in Distortion Product Otoacoustic Emissions in Auditory Neuropathy Patients With Distinct Clinical and Genetic Backgrounds. Ear and Hearing, 2019, 40, 184-191.	2.1	17
41	Systematic quantification of the anion transport function of pendrin (SLC26A4) and its diseaseâ€associated variants. Human Mutation, 2020, 41, 316-331.	2.5	16
42	Audiological Features and Mitochondrial DNA Sequence in a Large Family Carrying Mitochondrial A1555G Mutation without Use of Aminoglycoside. Annals of Otology, Rhinology and Laryngology, 2005, 114, 153-160.	1.1	15
43	Genetic analysis of <i>PAX3</i> for diagnosis of Waardenburg syndrome type I. Acta Oto-Laryngologica, 2013, 133, 345-351.	0.9	15
44	Vestibular dysfunction in a Japanese patient with a mutation in the gene OPA1. Journal of the Neurological Sciences, 2010, 293, 23-28.	0.6	14
45	Late-phase recovery in the cochlear lateral wall following severe degeneration by acute energy failure. Brain Research, 2011, 1419, 1-11.	2.2	14
46	Functional interaction between mesenchymal stem cells and spiral ligament fibrocytes. Journal of Neuroscience Research, 2012, 90, 1713-1722.	2.9	14
47	Differences between acoustic trauma and other types of acute noise-induced hearing loss in terms of treatment and hearing prognosis. Acta Oto-Laryngologica, 2017, 137, S48-S52.	0.9	14
48	<i>WFS1</i> and <i>GJB2</i> mutations in patients with bilateral lowâ€frequency sensorineural hearing loss. Laryngoscope, 2017, 127, E324-E329.	2.0	14
49	Frequency and specific characteristics of the incomplete partition type III anomaly in children. Laryngoscope, 2017, 127, 1663-1669.	2.0	14
50	A case report of reversible generalized seizures in a patient with Waardenburg syndrome associated with a novel nonsense mutation in the penultimate exon of SOX10. BMC Pediatrics, 2018, 18, 171.	1.7	14
51	Acoustic overstimulation-induced apoptosis in fibrocytes of the cochlear spiral limbus of mice. European Archives of Oto-Rhino-Laryngology, 2011, 268, 973-978.	1.6	13
52	Systematic analysis of mitochondrial genes associated with hearing loss in the Japanese population: dHPLC reveals a new candidate mutation. BMC Medical Genetics, 2011, 12, 135.	2.1	13
53	A novel frameshift mutation in KCNQ4 in a family with autosomal recessive non-syndromic hearing loss. Biochemical and Biophysical Research Communications, 2015, 463, 582-586.	2.1	13
54	In silico modeling of the pore region of a KCNQ4 missense mutant from a patient with hearing loss. BMC Research Notes, 2012, 5, 145.	1.4	11

#	Article	IF	CITATIONS
55	Attenuation of Progressive Hearing Loss in DBA/2J Mice by Reagents that Affect Epigenetic Modifications Is Associated with Up-Regulation of the Zinc Importer Zip4. PLoS ONE, 2015, 10, e0124301.	2.5	11
56	Relationships among drinking and smoking habits, history of diseases, body mass index and idiopathic sudden sensorineural hearing loss in Japanese patients. Acta Oto-Laryngologica, 2017, 137, S17-S23.	0.9	11
57	A phase I/IIa double blind single institute trial of low dose sirolimus for Pendred syndrome/DFNB4. Medicine (United States), 2020, 99, e19763.	1.0	11
58	Balance dysfunction resulting from acute inner ear energy failure is caused primarily by vestibular hair cell damage. Journal of Neuroscience Research, 2010, 88, 1262-1272.	2.9	10
59	Moderate hearing loss associated with a novel KCNQ4 non-truncating mutation located near the N-terminus of the pore helix. Biochemical and Biophysical Research Communications, 2013, 432, 475-479.	2.1	10
60	Neuroprotective effects of cutamesine, a ligand of the sigmaâ€1 receptor chaperone, against noiseâ€induced hearing loss. Journal of Neuroscience Research, 2015, 93, 788-795.	2.9	10
61	Clinical characteristics of a Japanese family with hearing loss accompanied by compound heterozygous mutations in LOXHD1. Auris Nasus Larynx, 2016, 43, 609-613.	1.2	10
62	Molecular Impairment Mechanisms of Novel OPA1 Mutations Predicted by Molecular Modeling in Patients With Autosomal Dominant Optic Atrophy and Auditory Neuropathy Spectrum Disorder. Otology and Neurotology, 2016, 37, 394-402.	1.3	9
63	A novel frameshift variant of COCH supports the hypothesis that haploinsufficiency is not a cause of autosomal dominant nonsyndromic deafness 9. Biochemical and Biophysical Research Communications, 2016, 469, 270-274.	2.1	9
64	Comorbidity of GJB2 and WFS1 mutations in one family. Gene, 2012, 501, 193-197.	2.2	7
65	Elongated EABR wave latencies observed in patients with auditory neuropathy caused by OTOF mutation. Laryngoscope Investigative Otolaryngology, 2018, 3, 388-393.	1.5	7
66	Chronic constipation recognized as a sign of a SOX10 mutation in a patient with Waardenburg syndrome. Gene, 2014, 540, 258-262.	2.2	6
67	Late onset and high-frequency dominant hearing loss in a family with MYH9 disorder. European Archives of Oto-Rhino-Laryngology, 2016, 273, 3547-3552.	1.6	6
68	The first sporadic case of DFNA11 identified by next-generation sequencing. International Journal of Pediatric Otorhinolaryngology, 2017, 100, 183-186.	1.0	6
69	High-level heteroplasmy for the m.7445A>G mitochondrial DNA mutation can cause progressive sensorineural hearing loss in infancy. International Journal of Pediatric Otorhinolaryngology, 2018, 108, 125-131.	1.0	6
70	Phenotype–genotype correlation in patients with typical and atypical branchio-oto-renal syndrome. Scientific Reports, 2022, 12, 969.	3.3	6
71	The auditory phenotype of children harboring mutations in the prestin gene. Acta Oto-Laryngologica, 2016, 136, 397-401.	0.9	5
72	Gene expression dataset for whole cochlea of Macaca fascicularis. Scientific Reports, 2018, 8, 15554.	3.3	5

TATSUO MATSUNAGA

#	Article	IF	CITATIONS
73	Clinical Profiles of DFNA11 at Diverse Stages of Development and Aging in a Large Family Identified by Linkage Analysis. Otology and Neurotology, 2020, 41, e663-e673.	1.3	5
74	Autosomal dominant optic atrophy with gene mutations accompanied by auditory neuropathy and other systemic complications in a Japanese cohort. Molecular Vision, 2019, 25, 559-573.	1.1	5
75	Long-lasting changes in the cochlear K+ recycling structures after acute energy failure. Neuroscience Research, 2013, 77, 33-41.	1.9	4
76	Spontaneous intramural duodenal hematoma as the manifestation of Noonan syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 496-498.	1.2	4
77	Clinical genetics, practice, and research of deafblindness: From uncollected experiences to the national registry in Japan. Auris Nasus Larynx, 2021, 48, 185-193.	1.2	4
78	Mutations inMYH9Exons 1, 16, 26, and 30 Are Infrequently Found in Japanese Patients with Nonsyndromic Deafness. Genetic Testing and Molecular Biomarkers, 2009, 13, 705-707.	0.7	3
79	Recovery of endocochlear potential after severe damage to lateral wall fibrocytes following acute cochlear energy failure. NeuroReport, 2016, 27, 1159-1166.	1.2	3
80	Whole exome analysis of patients in Japan with hearing loss reveals high heterogeneity among responsible and novel candidate genes. Orphanet Journal of Rare Diseases, 2022, 17, 114.	2.7	3
81	Trends in Genetic Research on Auditory Neuropathy. , 2009, , 43-50.		2
82	Differences in hearing levels between siblings with hearing loss caused by GJB2 mutations. Auris Nasus Larynx, 2020, 47, 938-942.	1.2	2
83	Investigation of the hearing levels of siblings affected by a single GJB2 variant: Possibility of genetic modifiers. International Journal of Pediatric Otorhinolaryngology, 2021, 149, 110840.	1.0	2
84	A High Risk of Missing Congenital Cytomegalovirus-Associated Hearing Loss through Newborn Hearing Screening in Japan. Journal of Clinical Medicine, 2021, 10, 5056.	2.4	2
85	Clinical Features of <i>GJB2―</i> associated Hearing Loss Children. Journal of Otolaryngology of Japan, 2020, 123, 1225-1230.	0.1	2
86	Gene expression profiling of DBA/2J mice cochleae treated with l-methionine and valproic acid. Genomics Data, 2015, 5, 323-325.	1.3	1
87	A case of auditory neuropathy revealed by OTOF gene mutation analysis in a junior high school girl. Journal of Otology, 2017, 12, 202-206.	1.0	1
88	Japanese pathogenic variant database: DPV. Translational Science of Rare Diseases, 2018, 3, 133-137.	1.5	1
89	A Familial Case of a Whole Germline <i>CDC73</i> Deletion Discordant for Primary Hyperparathyroidism. Hormone Research in Paediatrics, 2019, 92, 56-63.	1.8	1
90	Effects on cervical vestibular-evoked myogenic potentials of four clinically used head and neck measurement positions in healthy subjects. Acta Oto-Laryngologica, 2021, 141, 729-735.	0.9	1

#	Article	IF	CITATIONS
91	Genetics of Inner Ear Malformation and Cochlear Nerve Deficiency. , 2017, , 47-59.		1
92	New Trends in Research and Clinical Practice for Congenital Hearing Loss Caused by Gene Mutations. Japan Journal of Logopedics and Phoniatrics, 2015, 56, 219-225.	0.1	0
93	Response to "infantile-onset deafness in m.7445A>G carriers may be multicausalâ€: International Journal of Pediatric Otorhinolaryngology, 2018, 111, 194.	1.0	Ο
94	Clinical and genetic analysis of children with hearing loss and bilateral enlarged vestibular aqueducts. International Journal of Pediatric Otorhinolaryngology, 2021, 152, 110975.	1.0	0
95	A Japanese boy with double diagnoses of 2p15p16.1 microdeletion syndrome and RP2-associated retinal disorder. Human Genome Variation, 2021, 8, 46.	0.7	0