Stuart Allan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2225212/publications.pdf Version: 2024-02-01

STHADT ΔΗ ΑΝ

#	Article	IF	CITATIONS
1	Cytokines and acute neurodegeneration. Nature Reviews Neuroscience, 2001, 2, 734-744.	4.9	994
2	Interleukin-1 and neuronal injury. Nature Reviews Immunology, 2005, 5, 629-640.	10.6	864
3	Vascular dysfunction—The disregarded partner of Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 158-167.	0.4	454
4	Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models. Nature Communications, 2016, 7, 12504.	5.8	328
5	Systemic Inflammatory Stimulus Potentiates the Acute Phase and CXC Chemokine Responses to Experimental Stroke and Exacerbates Brain Damage via Interleukin-1- and Neutrophil-Dependent Mechanisms. Journal of Neuroscience, 2007, 27, 4403-4412.	1.7	320
6	Impaired Adult Neurogenesis in the Dentate Gyrus of a Triple Transgenic Mouse Model of Alzheimer's Disease. PLoS ONE, 2008, 3, e2935.	1.1	314
7	Inflammation in central nervous system injury. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1669-1677.	1.8	301
8	Proliferating Resident Microglia after Focal Cerebral Ischaemia in Mice. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1941-1953.	2.4	301
9	Systemic Inflammation Alters the Kinetics of Cerebrovascular Tight Junction Disruption after Experimental Stroke in Mice. Journal of Neuroscience, 2008, 28, 9451-9462.	1.7	286
10	Systemic infection, inflammation and acute ischemic stroke. Neuroscience, 2009, 158, 1049-1061.	1.1	280
11	Inflammation and brain injury: Acute cerebral ischaemia, peripheral and central inflammation. Brain, Behavior, and Immunity, 2010, 24, 708-723.	2.0	251
12	AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4050-4055.	3.3	211
13	High-fat diet-induced memory impairment in triple-transgenic Alzheimer's disease (3xTgAD) mice isAindependent of changes in amyloid and tau pathology. Neurobiology of Aging, 2014, 35, 1821-1832.	1.5	189
14	Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nature Immunology, 2014, 15, 1116-1125.	7.0	187
15	The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1276-1292.	2.4	184
16	Neutrophil Cerebrovascular Transmigration Triggers Rapid Neurotoxicity through Release of Proteases Associated with Decondensed DNA. Journal of Immunology, 2012, 189, 381-392.	0.4	174
17	Brain inflammation is induced by co-morbidities and risk factors for stroke. Brain, Behavior, and Immunity, 2011, 25, 1113-1122.	2.0	173
18	A dual role for interleukin-1 in LTP in mouse hippocampal slices. Journal of Neuroimmunology, 2003, 144, 61-67.	1.1	171

#	Article	IF	CITATIONS
19	Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Research and Therapy, 2017, 8, 79.	2.4	168
20	Inactivation of Caspase-1 in Rodent Brain: A Novel Anticonvulsive Strategy. Epilepsia, 2006, 47, 1160-1168.	2.6	159
21	Collapsin response mediator proteinâ€2 hyperphosphorylation is an early event in Alzheimer's disease progression. Journal of Neurochemistry, 2007, 103, 1132-1144.	2.1	158
22	Interleukin-1β and the interleukin-1 receptor antagonist act in the striatum to modify excitotoxic brain damage in the rat. European Journal of Neuroscience, 1998, 10, 1188-1195.	1.2	150
23	Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release. Journal of Neurochemistry, 2006, 98, 258-266.	2.1	147
24	Platelet interleukin- $1\hat{l}_{\pm}$ drives cerebrovascular inflammation. Blood, 2010, 115, 3632-3639.	0.6	145
25	Microglia and macrophages differentially modulate cell death after brain injury caused by oxygenâ€glucose deprivation in organotypic brain slices. Glia, 2013, 61, 813-824.	2.5	143
26	SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke). Stroke, 2018, 49, 1210-1216.	1.0	137
27	The IMPROVE Guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments). Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3488-3517.	2.4	128
28	Interleukin-1 and acute brain injury. Frontiers in Cellular Neuroscience, 2015, 9, 18.	1.8	125
29	Interleukinâ€1 in the Brain. Annals of the New York Academy of Sciences, 2003, 992, 39-47.	1.8	123
30	Delayed Administration of Interleukin-1 Receptor Antagonist Reduces Ischemic Brain Damage and Inflammation in Comorbid Rats. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1810-1819.	2.4	122
31	A brain in flame; do inflammasomes and pyroptosis influence stroke pathology?. Brain Pathology, 2017, 27, 205-212.	2.1	119
32	A Rapid and Transient Peripheral Inflammatory Response Precedes Brain Inflammation after Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1764-1768.	2.4	114
33	Interleukin-1 in Stroke. Stroke, 2016, 47, 2160-2167.	1.0	104
34	Interleukin-1 and Stroke: Biomarker, Harbinger of Damage, and Therapeutic Target. Cerebrovascular Diseases, 2011, 32, 517-527.	0.8	103
35	Assessing the contribution of inflammation in models of Alzheimer's disease. Biochemical Society Transactions, 2011, 39, 886-890.	1.6	102
36	Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology. DMM Disease Models and Mechanisms, 2012, 5, 823-33.	1.2	89

#	Article	IF	CITATIONS
37	Cortical cell death induced by IL-1 is mediated via actions in the hypothalamus of the rat. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5580-5585.	3.3	78
38	Boron-Based Inhibitors of the NLRP3 Inflammasome. Cell Chemical Biology, 2017, 24, 1321-1335.e5.	2.5	77
39	Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming. Stem Cell Research and Therapy, 2018, 9, 11.	2.4	74
40	The Acute-Phase Protein PTX3 is an Essential Mediator of Glial Scar Formation and Resolution of Brain Edema after Ischemic Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 480-488.	2.4	73
41	A quantitative brain map of experimental cerebral malaria pathology. PLoS Pathogens, 2017, 13, e1006267.	2.1	73
42	Regulation of interleukin-1 in acute brain injury. Trends in Pharmacological Sciences, 2011, 32, 617-622.	4.0	71
43	Translational models for vascular cognitive impairment: a review including larger species. BMC Medicine, 2017, 15, 16.	2.3	71
44	Microglial Priming as Trained Immunity in the Brain. Neuroscience, 2019, 405, 47-54.	1.1	68
45	Systemic immune activation shapes stroke outcome. Molecular and Cellular Neurosciences, 2013, 53, 14-25.	1.0	67
46	Selective Liposomal Transport through Blood Brain Barrier Disruption in Ischemic Stroke Reveals Two Distinct Therapeutic Opportunities. ACS Nano, 2019, 13, 12470-12486.	7.3	66
47	Reparative effects of interleukin-1 receptor antagonist in young and aged/co-morbid rodents after cerebral ischemia. Brain, Behavior, and Immunity, 2017, 61, 117-126.	2.0	64
48	Circulating Cytokines and Alarmins Associated with Placental Inflammation in Highâ€Risk Pregnancies. American Journal of Reproductive Immunology, 2014, 72, 422-434.	1.2	63
49	Experimental Intracerebral Hemorrhage: Avoiding Pitfalls in Translational Research. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2135-2151.	2.4	62
50	ADAMTS-1 and -4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes. Brain Research, 2006, 1088, 19-30.	1.1	61
51	Experimental Stroke-Induced Changes in the Bone Marrow Reveal Complex Regulation of Leukocyte Responses. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1036-1050.	2.4	61
52	A cross-laboratory preclinical study on the effectiveness of interleukin-1 receptor antagonist in stroke. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 596-605.	2.4	61
53	<scp>IL</scp> â€1α and inflammasomeâ€independent <scp>IL</scp> â€1β promote neutrophil infiltration following alum vaccination. FEBS Journal, 2016, 283, 9-24.	2.2	60
54	Systemic inflammation and stroke: aetiology, pathology and targets for therapy. Biochemical Society Transactions, 2007, 35, 1163-1165.	1.6	59

#	Article	IF	CITATIONS
55	Neuroinflammation in Parkinson's patients and MPTP-treated mice is not restricted to the nigrostriatal system: Microgliosis and differential expression of interleukin-1 receptors in the olfactory bulb. Experimental Gerontology, 2007, 42, 762-771.	1.2	57
56	Mitochondrial Abnormalities and Synaptic Loss Underlie Memory Deficits Seen in Mouse Models of Obesity and Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 915-932.	1.2	55
57	A luminescent probe containing a tuftsin targeting vector coupled to a terbium complex. Chemical Communications, 2006, , 909.	2.2	54
58	The Role of Pro―and Antiinflammatory Cytokines in Neurodegeneration. Annals of the New York Academy of Sciences, 2000, 917, 84-93.	1.8	54
59	Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice. DMM Disease Models and Mechanisms, 2012, 6, 160-70.	1.2	52
60	Acidosis Drives Damage-associated Molecular Pattern (DAMP)-induced Interleukin-1 Secretion via a Caspase-1-independent Pathway. Journal of Biological Chemistry, 2013, 288, 30485-30494.	1.6	50
61	<i>Streptococcus pneumoniae</i> worsens cerebral ischemia via interleukin 1 and platelet glycoprotein Ibα. Annals of Neurology, 2014, 75, 670-683.	2.8	50
62	Matrix metalloproteinase-9 and urokinase plasminogen activator mediate interleukin-1-induced neurotoxicity. Molecular and Cellular Neurosciences, 2008, 37, 135-142.	1.0	49
63	Interleukin-1 mediates ischaemic brain injury via distinct actions on endothelial cells and cholinergic neurons. Brain, Behavior, and Immunity, 2019, 76, 126-138.	2.0	48
64	Anakinra in COVID-19: important considerations for clinical trials. Lancet Rheumatology, The, 2020, 2, e379-e381.	2.2	47
65	Hypermetabolism in a triple-transgenic mouse model of Alzheimer's disease. Neurobiology of Aging, 2012, 33, 187-193.	1.5	46
66	Small, Thin Graphene Oxide Is Anti-inflammatory Activating Nuclear Factor Erythroid 2-Related Factor 2 <i>via</i> Metabolic Reprogramming. ACS Nano, 2018, 12, 11949-11962.	7.3	43
67	IL-1Rrp2 expression and IL-1F9 (IL-1H1) actions in brain cells. Journal of Neuroimmunology, 2003, 139, 36-43.	1.1	42
68	Systemic Inflammation Impairs Tissue Reperfusion Through Endothelin-Dependent Mechanisms in Cerebral Ischemia. Stroke, 2014, 45, 3412-3419.	1.0	42
69	Late-Onset Epilepsy and Occult Cerebrovascular Disease. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 564-570.	2.4	42
70	Preceding infection and risk of stroke: An old concept revived by the COVID-19 pandemic. International Journal of Stroke, 2020, 15, 722-732.	2.9	40
71	Inflammatory responses in the rat brain in response to different methods of intra-cerebral administration. Journal of Neuroimmunology, 2008, 194, 27-33.	1.1	39
72	Interleukinâ€1 Mediates Neuroinflammatory Changes Associated With Dietâ€Induced Atherosclerosis. Journal of the American Heart Association, 2012, 1, e002006.	1.6	38

#	Article	IF	CITATIONS
73	Endogenous Oils Derived From Human Adipocytes Are Potent Adjuvants That Promote IL-1α–Dependent Inflammation. Diabetes, 2014, 63, 2037-2050.	0.3	38

Extent of Ischemic Brain Injury After Thrombotic Stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 rgBT /Overlock 10 1.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 stroke Is Independent of NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 stroke Is Independent of NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 stroke Is Independent of NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 stroke Is Independent of NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 stroke Is Independent of NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 stroke Is Independent of NLRP3 (NACHT, LRR and) Tj ETQq0 0 0.0 stro

75	Delayed Reperfusion Deficits after Experimental Stroke Account for Increased Pathophysiology. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 277-284.	2.4	37
76	Targeting the IL33–NLRP3 axis improves therapy for experimental cerebral malaria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7404-7409.	3.3	37
77	Efficacy of Alteplase in a Mouse Model of Acute Ischemic Stroke. Stroke, 2016, 47, 1312-1318.	1.0	36
78	Neutrophil infiltration to the brain is plateletâ€dependent, and is reversed by blockade of platelet GPlb <i>α</i> . Immunology, 2018, 154, 322-328.	2.0	36
79	Central and haematopoietic interleukin-1 both contribute to ischaemic brain injury in mice. DMM Disease Models and Mechanisms, 2013, 6, 1043-8.	1.2	35
80	Interleukin-1 Drives Cerebrovascular Inflammation via MAP Kinase-Independent Pathways. Current Neurovascular Research, 2010, 7, 330-340.	0.4	35
81	Long-term functional recovery and compensation after cerebral ischemia in rats. Behavioural Brain Research, 2014, 270, 18-28.	1.2	34
82	Isolation and Cultivation of Primary Brain Endothelial Cells from Adult Mice. Bio-protocol, 2017, 7, .	0.2	34
83	Requirement for interleukinâ€1 to drive brain inflammation reveals tissueâ€specific mechanisms of innate immunity. European Journal of Immunology, 2015, 45, 525-530.	1.6	33
84	Maternal High-Fat Diet Worsens Memory Deficits in the Triple-Transgenic (3xTgAD) Mouse Model of Alzheimer's Disease. PLoS ONE, 2014, 9, e99226.	1.1	33
85	Itaconate and fumarate derivatives inhibit priming and activation of the canonical NLRP3 inflammasome in macrophages. Immunology, 2022, 165, 460-480.	2.0	33
86	Systemic infection exacerbates cerebrovascular dysfunction in Alzheimer's disease. Brain, 2021, 144, 1869-1883.	3.7	32
87	Systemic conditioned medium treatment from interleukin-1 primed mesenchymal stem cells promotes recovery after stroke. Stem Cell Research and Therapy, 2020, 11, 32.	2.4	28
88	Development of a characterised tool kit for the interrogation of NLRP3 inflammasome-dependent responses. Scientific Reports, 2018, 8, 5667.	1.6	27
89	Acute high-fat feeding leads to disruptions in glucose homeostasis and worsens stroke outcome. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1026-1037.	2.4	27
90	Interleukinâ€1 as a pharmacological target in acute brain injury. Experimental Physiology, 2015, 100, 1488-1494.	0.9	26

#	Article	IF	CITATIONS
91	The Interleukin-1 System: An Attractive and Viable Therapeutic Target in Neurodegenerative Disease. CNS and Neurological Disorders, 2003, 2, 293-302.	4.3	26
92	Influence of corticotrophin releasing factor on neuronal cell death in vitro and in vivo. Brain Research, 2000, 881, 139-143.	1.1	25
93	Characterization of a conditional interleukinâ€1 receptor 1 mouse mutant using the Cre/LoxP system. European Journal of Immunology, 2016, 46, 912-918.	1.6	25
94	Neurodegenerative actions of interleukin-1 in the rat brain are mediated through increases in seizure activity. Journal of Neuroscience Research, 2006, 83, 385-391.	1.3	24
95	Pentraxin 3 promotes long-term cerebral blood flow recovery, angiogenesis, and neuronal survival after stroke. Journal of Molecular Medicine, 2018, 96, 1319-1332.	1.7	24
96	Systemic inflammation affects reperfusion following transient cerebral ischaemia. Experimental Neurology, 2016, 277, 252-260.	2.0	23
97	Cardiovascular comorbidities, inflammation, and cerebral small vessel disease. Cardiovascular Research, 2021, 117, 2575-2588.	1.8	22
98	Emerging roles of the acute phase protein pentraxin-3 during central nervous system disorders. Journal of Neuroimmunology, 2016, 292, 27-33.	1.1	21
99	Stroke: The past, present and future. Brain and Neuroscience Advances, 2018, 2, 239821281881068.	1.8	21
100	Systematic Review and Meta-Analysis of the Efficacy of Statins in Experimental Stroke. International Journal of Stroke, 2012, 7, 150-156.	2.9	20
101	Site-specific actions of interleukin-1 on excitotoxic cell death in the rat striatum. Brain Research, 2002, 926, 142-148.	1.1	19
102	Stroke Induces Prolonged Changes in Lipid Metabolism, the Liver and Body Composition in Mice. Translational Stroke Research, 2020, 11, 837-850.	2.3	19
103	Varied actions of proinflammatory cytokines on excitotoxic cell death in the rat central nervous system. Journal of Neuroscience Research, 2002, 67, 428-434.	1.3	18
104	Ligature-induced periodontitis induces systemic inflammation but does not alter acute outcome after stroke in mice. International Journal of Stroke, 2020, 15, 175-187.	2.9	18
105	Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage. F1000Research, 2018, 7, 1617.	0.8	18
106	Interleukin-1β and interleukin-1 receptor antagonist do not affect glutamate release or calcium entry in rat striatal synaptosomes. Molecular Psychiatry, 1998, 3, 178-182.	4.1	17
107	Dissociation between the effects of interleukin-1 on excitotoxic brain damage and body temperature in the rat. Brain Research, 1999, 830, 32-37.	1.1	17
108	ADAMTS-9 expression is up-regulated following transient middle cerebral artery occlusion (tMCAo) in the rat. Neuroscience Letters, 2009, 452, 252-257.	1.0	17

#	Article	IF	CITATIONS
109	Occult Cerebrovascular Disease and Late-Onset Epilepsy: Could Loss of Neurovascular Unit Integrity Be a Viable Model?. Cardiovascular Psychiatry and Neurology, 2011, 2011, 1-7.	0.8	17
110	Generation of Human Mesenchymal Stem Cell 3D Spheroids Using Low-binding Plates. Bio-protocol, 2018, 8, .	0.2	17
111	Selective increases in cytokine expression in the rat brain in response to striatal injection of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and interleukin-1. Molecular Brain Research, 2001, 93, 180-189.	2.5	16
112	Variations in inflammation-related genes may be associated with childhood febrile seizure susceptibility. Seizure: the Journal of the British Epilepsy Association, 2014, 23, 457-461.	0.9	16
113	A Multi-Model Pipeline for Translational Intracerebral Haemorrhage Research. Translational Stroke Research, 2020, 11, 1229-1242.	2.3	16
114	Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage. F1000Research, 2018, 7, 1617.	0.8	16
115	Assessing Inflammation in Acute Intracerebral Hemorrhage with PK11195 PET and Dynamic Contrast-Enhanced MRI. , 2018, 28, 158-161.		15
116	Functionally linked potassium channel activity in cerebral endothelial and smooth muscle cells is compromised in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
117	The Neurovascular Unit and the Key Role of Astrocytes in the Regulation of Cerebral Blood Flow. Cerebrovascular Diseases, 2006, 21, 137-138.	0.8	14
118	Value of dynamic clinical and biomarker data for mortality risk prediction in COVID-19: a multicentre retrospective cohort study. BMJ Open, 2020, 10, e041983.	0.8	14
119	Global proteomic analysis of extracellular matrix in mouse and human brain highlights relevance to cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2423-2438.	2.4	14
120	An Endovascular Perforation Model of Subarachnoid Haemorrhage in Rat Produces Heterogeneous Infarcts that Increase with Blood Load. Translational Stroke Research, 2012, 3, 164-172.	2.3	13
121	Acid-dependent Interleukin-1 (IL-1) Cleavage Limits Available Pro-IL-1Î ² for Caspase-1 Cleavage. Journal of Biological Chemistry, 2015, 290, 25374-25381.	1.6	13
122	Regenerative Potential of Hydrogels for Intracerebral Hemorrhage: Lessons from Ischemic Stroke and Traumatic Brain Injury Research. Advanced Healthcare Materials, 2021, 10, e2100455.	3.9	13
123	Therapeutic potential of extracellular vesicles in preclinical stroke models: a systematic review and meta-analysisTherapeutic potential of extracellular vesicles in preclinical stroke models: a systematic review and meta-analysis. BMJ Open Science, 2020, 44, e100047.	0.8	12
124	Hallmarks of NLRP3 inflammasome activation are observed in organotypic hippocampal slice culture. Immunology, 2020, 161, 39-52.	2.0	12
125	Systematic review: Association between circulating microRNA expression & stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 935-951.	2.4	12
126	Cortical Death Caused by Striatal Administration of AMPA and Interleukin-1 is Mediated by Activation of Cortical NMDA Receptors. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1409-1413.	2.4	11

#	Article	IF	CITATIONS
127	Surgical manipulation compromises leukocyte mobilization responses and inflammation after experimental cerebral ischemia in mice. Frontiers in Neuroscience, 2013, 7, 271.	1.4	11
128	Using Zebrafish Larvae to Study the Pathological Consequences of Hemorrhagic Stroke. Journal of Visualized Experiments, 2019, , .	0.2	11
129	Robust thrombolytic and anti-inflammatory action of a constitutively active ADAMTS13 variant in murine stroke models. Blood, 2022, 139, 1575-1587.	0.6	10
130	Influence of metabolic syndrome on post-stroke outcome, angiogenesis and vascular function in old rats determined by dynamic contrast enhanced MRI. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1692-1706.	2.4	9
131	Pentraxin 3 regulates neutrophil infiltration to the brain during neuroinflammation. AMRC Open Research, 2019, 1, 10.	1.7	9
132	Re-directing nanomedicines to the spleen: A potential technology for peripheral immunomodulation. Journal of Controlled Release, 2022, 350, 60-79.	4.8	9
133	Development & automation of a novel [18F]F prosthetic group, 2-[18F]-fluoro-3-pyridinecarboxaldehyde, and its application to an amino(oxy)-functionalised Aβ peptide. Applied Radiation and Isotopes, 2016, 116, 120-127.	0.7	8
134	Revisiting promising preclinical intracerebral hemorrhage studies to highlight repurposable drugs for translation. International Journal of Stroke, 2021, 16, 123-136.	2.9	8
135	Zebrafish drug screening identifies candidate therapies for neuroprotection after spontaneous intracerebral haemorrhage. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	8
136	Epilepsy and the inflammasome: Targeting inflammation as a novel therapeutic strategy for seizure disorders. Inflammasome, 2014, 1, .	0.6	7
137	A hyperacute immune map of ischaemic stroke patients reveals alterations to circulating innate and adaptive cells. Clinical and Experimental Immunology, 2021, 203, 458-471.	1.1	7
138	Decreased haemodynamic response and decoupling of cortical gamma-band activity and tissue oxygen perfusion after striatal interleukin-1 injection. Journal of Neuroinflammation, 2016, 13, 195.	3.1	6
139	Interleukin-1 receptor antagonist treatment in acute ischaemic stroke does not alter systemic markers of anti-microbial defence. F1000Research, 2019, 8, 1039.	0.8	6
140	Tuftsin derivatives of FITC, Tb–DOTA or Gd–DOTA as potential macrophageâ€specific imaging biomarkers. Contrast Media and Molecular Imaging, 2010, 5, 223-230.	0.4	5
141	Improved reperfusion following alternative surgical approach for experimental stroke in mice. F1000Research, 2020, 9, 188.	0.8	5
142	Interleukin-1 receptor antagonist treatment in acute ischaemic stroke does not alter systemic markers of anti-microbial defence. F1000Research, 2019, 8, 1039.	0.8	5
143	Interleukin-1 Receptor Antagonist in Animal Models of Stroke: A Fair Summing Up?. Journal of Stroke and Cerebrovascular Diseases, 2010, 19, 512-513.	0.7	4
144	Beyond Antoni: A Surgeon's Guide to the Vestibular Schwannoma Microenvironment. Journal of Neurological Surgery, Part B: Skull Base, 2022, 83, 001-010.	0.4	4

#	Article	IF	CITATIONS
145	UK consensus on pre-clinical vascular cognitive impairment functional outcomes assessment: Questionnaire and workshop proceedings. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1402-1414.	2.4	4
146	Glyceryl trinitrate for the treatment of ischaemic stroke: Determining efficacy in rodent and ovine species for enhanced clinical translation. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3248-3259.	2.4	4
147	Letter by McColl et al Regarding Article, "Influenza Virus Infection Aggravates Stroke Outcomeâ€. Stroke, 2011, 42, e416; author reply e417.	1.0	3
148	Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRI. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 0271678X2097852.	2.4	3
149	Improved reperfusion following alternative surgical approach for experimental stroke in mice. F1000Research, 2020, 9, 188.	0.8	3
150	Anti-inflammatory modulators in stroke. Drug Discovery Today: Therapeutic Strategies, 2004, 1, 59-67.	0.5	1
151	Improved reperfusion following alternative surgical approach for experimental stroke in mice. F1000Research, 0, 9, 188.	0.8	1
152	Does previous stroke modify the relationship between inflammatory biomarkers and clinical endpoints in CKD patients?. BMC Nephrology, 2022, 23, 38.	0.8	1
153	Do Concentration or Activity of Selenoproteins Change in Acute Stroke Patients? A Systematic Review and Meta-Analyses. Cerebrovascular Diseases, 2022, 51, 461-472.	0.8	1
154	Sites and mechanisms of IL-1 action in ischemic and excitotoxic brain damage. , 2002, , 237-246.		0
155	Peripheral administration of interleukin-1β exacerbates ischaemic brain damage after transient focal ischaemia in mice. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S103-S103.	2.4	0
156	A novel genotyping method to determine copy number in a mouse line commonly used for inducible transgene expression in brain and spinal cord. F1000Research, 0, 9, 1249.	0.8	0
157	A novel genotyping method to determine copy number in a mouse line commonly used for inducible transgene expression in brain and spinal cord. F1000Research, 0, 9, 1249.	0.8	0