
## Takuya Suzaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2225028/publications.pdf Version: 2024-02-01



TAKUNA SUZAKI

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Functional Characterization of Tomato Phytochrome A and B1B2 Mutants in Response to Heat Stress.<br>International Journal of Molecular Sciences, 2022, 23, 1681.                                                | 1.8 | 11        |
| 2  | Nitrate transport via NRT2.1 mediates NIN-LIKE PROTEIN-dependent suppression of root nodulation in <i>Lotus japonicus</i> . Plant Cell, 2022, 34, 1844-1862.                                                    | 3.1 | 21        |
| 3  | Different DNA-binding specificities of NLP and NIN transcription factors underlie nitrate-induced control of root nodulation. Plant Cell, 2021, 33, 2340-2359.                                                  | 3.1 | 52        |
| 4  | Editorial: Nutrient Dependent Signaling Pathways Controlling the Symbiotic Nitrogen Fixation Process. Frontiers in Plant Science, 2021, 12, 744450.                                                             | 1.7 | 0         |
| 5  | The PHD finger of Arabidopsis SIZ1 recognizes trimethylated histone H3K4 mediating SIZ1 function and abiotic stress response. Communications Biology, 2020, 3, 23.                                              | 2.0 | 36        |
| 6  | Novel rhizobia exhibit superior nodulation and biological nitrogen fixation even under high nitrate concentrations. FEMS Microbiology Ecology, 2020, 96, .                                                      | 1.3 | 18        |
| 7  | CLE-HAR1 Systemic Signaling and NIN-Mediated Local Signaling Suppress the Increased Rhizobial<br>Infection in the daphne Mutant of Lotus japonicus. Molecular Plant-Microbe Interactions, 2020, 33,<br>320-327. | 1.4 | 8         |
| 8  | MIR2111-5 locus and shoot-accumulated mature miR2111 systemically enhance nodulation depending on HAR1 in Lotus japonicus. Nature Communications, 2020, 11, 5192.                                               | 5.8 | 31        |
| 9  | Autoregulation of nodulation pathway is dispensable for nitrate-induced control of rhizobial infection. Plant Signaling and Behavior, 2020, 15, 1733814.                                                        | 1.2 | 10        |
| 10 | Agroinfiltration-based efficient transient protein expression in leguminous plants. Plant<br>Biotechnology, 2019, 36, 119-123.                                                                                  | 0.5 | 21        |
| 11 | Autoregulation of Legume Nodulation by Sophisticated Transcriptional Regulatory Networks.<br>Molecular Plant, 2019, 12, 1179-1181.                                                                              | 3.9 | 12        |
| 12 | LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus. PLoS Genetics, 2019, 15, e1007865.                         | 1.5 | 23        |
| 13 | PLENTY, a hydroxyprolineO-arabinosyltransferase, negatively regulates root nodule symbiosis inLotus<br>japonicus. Journal of Experimental Botany, 2019, 70, 507-517.                                            | 2.4 | 23        |
| 14 | A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis inÂLotus japonicus.<br>Nature Communications, 2018, 9, 499.                                                                        | 5.8 | 144       |
| 15 | Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+<br>increase and cold tolerance in Arabidopsis. Scientific Reports, 2018, 8, 550.                                     | 1.6 | 97        |
| 16 | Regulation and functional diversification of root hairs. Seminars in Cell and Developmental Biology, 2018, 83, 115-122.                                                                                         | 2.3 | 28        |
| 17 | Nitrate-mediated control of root nodule symbiosis. Current Opinion in Plant Biology, 2018, 44, 129-136.                                                                                                         | 3.5 | 103       |
| 18 | MYC-type transcription factors, MYC67 and MYC70, interact with ICE1 and negatively regulate cold tolerance in Arabidopsis. Scientific Reports, 2018, 8, 11622.                                                  | 1.6 | 21        |

ΤΑΚUYA SUZAKI

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Two Negative Regulatory Systems of Root Nodule Symbiosis: How Are Symbiotic Benefits and Costs<br>Balanced?. Plant and Cell Physiology, 2018, 59, 1733-1738.                                                 | 1.5 | 32        |
| 20 | Spatiotemporal deep imaging of syncytium induced by the soybean cyst nematode Heterodera glycines.<br>Protoplasma, 2017, 254, 2107-2115.                                                                     | 1.0 | 19        |
| 21 | Fluorescent Labeling of the Cyst Nematode <i>Heterodera glycines</i> in Deep-Tissue Live Imaging.<br>Cytologia, 2017, 82, 251-259.                                                                           | 0.2 | 0         |
| 22 | Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus. Journal of Plant<br>Research, 2016, 129, 909-919.                                                                              | 1.2 | 59        |
| 23 | Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. ELife, 2016, 5, .                                                                                          | 2.8 | 158       |
| 24 | Leguminous Plants: Inventors of Root Nodules to Accommodate Symbiotic Bacteria. International<br>Review of Cell and Molecular Biology, 2015, 316, 111-158.                                                   | 1.6 | 133       |
| 25 | A mechanistic framework for noncell autonomous stem cell induction in <i>Arabidopsis</i> .<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14619-14624.       | 3.3 | 286       |
| 26 | Shoot-derived cytokinins systemically regulate root nodulation. Nature Communications, 2014, 5, 4983.                                                                                                        | 5.8 | 199       |
| 27 | A Positive Regulator of Nodule Organogenesis, NODULE INCEPTION, Acts as a Negative Regulator of<br>Rhizobial Infection in <i>Lotus japonicus</i> Å Â. Plant Physiology, 2014, 165, 747-758.                  | 2.3 | 84        |
| 28 | Root nodulation: a developmental program involving cell fate conversion triggered by symbiotic bacterial infection. Current Opinion in Plant Biology, 2014, 21, 16-22.                                       | 3.5 | 64        |
| 29 | Endoreduplication-mediated initiation of symbiotic organ development in <i>Lotus japonicus</i> .<br>Development (Cambridge), 2014, 141, 2441-2445.                                                           | 1.2 | 52        |
| 30 | CERBERUS and NSP1 of Lotus japonicus are Common Symbiosis Genes that Modulate Arbuscular<br>Mycorrhiza Development. Plant and Cell Physiology, 2013, 54, 1711-1723.                                          | 1.5 | 78        |
| 31 | <i>TRICOT</i> encodes an AMP1-related carboxypeptidase that regulates root nodule development and shoot apical meristem maintenance in <i>Lotus japonicus</i> . Development (Cambridge), 2013, 140, 353-361. | 1.2 | 21        |
| 32 | Genetic basis of cytokinin and auxin functions during root nodule development. Frontiers in Plant<br>Science, 2013, 4, 42.                                                                                   | 1.7 | 65        |
| 33 | Induction of localized auxin response during spontaneous nodule development in <i>Lotus<br/>japonicus</i> . Plant Signaling and Behavior, 2013, 8, e23359.                                                   | 1.2 | 9         |
| 34 | TOO MUCH LOVE, a Novel Kelch Repeat-Containing F-box Protein, Functions in the Long-Distance<br>Regulation of the Legume–Rhizobium Symbiosis. Plant and Cell Physiology, 2013, 54, 433-447.                  | 1.5 | 110       |
| 35 | Grafting analysis indicates that malfunction ofTRICOTin the root causes a nodulation-deficient phenotype inLotus japonicus. Plant Signaling and Behavior, 2013, 8, e23497.                                   | 1.2 | 0         |
| 36 | Hairy Root Transformation in Lotus japonicus. Bio-protocol, 2013, 3, .                                                                                                                                       | 0.2 | 15        |

ΤΑΚUYA SUZAKI

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Stable Transformation in Lotus japonicus. Bio-protocol, 2013, 3, .                                                                                                                                                        | 0.2 | 3         |
| 38 | Positive and negative regulation of cortical cell division during root nodule development in <i>Lotus japonicus</i> is accompanied by auxin response. Development (Cambridge), 2012, 139, 3997-4006.                      | 1.2 | 186       |
| 39 | Distinct Regulation of Adaxial-Abaxial Polarity in Anther Patterning in Rice  Â. Plant Cell, 2010, 22,<br>1452-1462.                                                                                                      | 3.1 | 96        |
| 40 | Transcriptional Control of a Plant Stem Cell Niche. Developmental Cell, 2010, 18, 841-853.                                                                                                                                | 3.1 | 221       |
| 41 | The homeotic gene <i>long sterile lemma</i> ( <i>G1</i> ) specifies sterile lemma identity in the rice spikelet. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20103-20108. | 3.3 | 163       |
| 42 | FON2 SPARE1 Redundantly Regulates Floral Meristem Maintenance with FLORAL ORGAN NUMBER2 in Rice. PLoS Genetics, 2009, 5, e1000693.                                                                                        | 1.5 | 58        |
| 43 | Functional Diversification of CLAVATA3-Related CLE Proteins in Meristem Maintenance in Rice Â. Plant<br>Cell, 2008, 20, 2049-2058.                                                                                        | 3.1 | 94        |
| 44 | Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Molecular Genetics and Genomics, 2007, 277, 457-468.                                                                | 1.0 | 124       |
| 45 | Conservation and Diversification of Meristem Maintenance Mechanism in Oryza sativa : Function of the FLORAL ORGAN NUMBER2 Gene. Plant and Cell Physiology, 2006, 47, 1591-1602.                                           | 1.5 | 159       |
| 46 | The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich<br>repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development (Cambridge), 2004, 131,<br>5649-5657.          | 1.2 | 267       |