
Sofia Benfeito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2224933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondriotropic antioxidant based on caffeic acid AntiOxCIN4 activates Nrf2-dependent antioxidant defenses and quality control mechanisms to antagonize oxidative stress-induced cell damage. Free Radical Biology and Medicine, 2022, 179, 119-132.	2.9	14
2	In Vitro Effects of Mitochondria-Targeted Antioxidants in a Small-Cell Carcinoma of the Ovary of Hypercalcemic Type and in Type 1 and Type 2 Endometrial Cancer. Biomedicines, 2022, 10, 800.	3.2	2
3	Molecular Modeling and Experimental Evaluation of Non-Chiral Components of Bergamot Essential Oil with Inhibitory Activity against Human Monoamine Oxidases. Molecules, 2022, 27, 2467.	3.8	4
4	Mitochondria-targeted anti-oxidant AntiOxCIN4 improved liver steatosis in Western diet-fed mice by preventing lipid accumulation due to upregulation of fatty acid oxidation, quality control mechanism and antioxidant defense systems. Redox Biology, 2022, 55, 102400.	9.0	12
5	Antioxidant Therapy and Neurodegenerative Disorders: Lessons From Clinical Trials. , 2021, , 97-110.		4
6	Mitochondria-targeted phenolic antioxidants induce ROS-protective pathways in primary human skin fibroblasts. Free Radical Biology and Medicine, 2021, 163, 314-324.	2.9	16
7	Fine-Tuning the Biological Profile of Multitarget Mitochondriotropic Antioxidants for Neurodegenerative Diseases. Antioxidants, 2021, 10, 329.	5.1	9
8	Lipid Nanosystems and Serum Protein as Biomimetic Interfaces: Predicting the Biodistribution of a Caffeic Acid-Based Antioxidant. Nanotechnology, Science and Applications, 2021, Volume 14, 7-27.	4.6	3
9	A mitochondria-targeted caffeic acid derivative reverts cellular and mitochondrial defects in human skin fibroblasts from male sporadic Parkinson's disease patients. Redox Biology, 2021, 45, 102037.	9.0	15
10	Cytotoxicity and Mitochondrial Effects of Phenolic and Quinone-Based Mitochondria-Targeted and Untargeted Antioxidants on Human Neuronal and Hepatic Cell Lines: A Comparative Analysis. Biomolecules, 2021, 11, 1605.	4.0	3
11	Antioxidant therapy, oxidative stress, and blood-brain barrier: The road of dietary antioxidants. , 2020, , 125-141.		6
12	Exploring the Multi-Target Performance of Mitochondriotropic Antioxidants against the Pivotal Alzheimer's Disease Pathophysiological Hallmarks. Molecules, 2020, 25, 276.	3.8	9
13	Boosting Drug Discovery for Parkinson's: Enhancement of the Delivery of a Monoamine Oxidase-B Inhibitor by Brain-Targeted PEGylated Polycaprolactone-Based Nanoparticles. Pharmaceutics, 2019, 11, 331.	4.5	11
14	Fine-tuning the neuroprotective and blood-brain barrier permeability profile of multi-target agents designed to prevent progressive mitochondrial dysfunction. European Journal of Medicinal Chemistry, 2019, 167, 525-545.	5.5	29
15	Targeting Mitochondria: The Road to Mitochondriotropic Antioxidants and Beyond. , 2018, , 333-358.		7
16	NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Medicinal Research Reviews, 2018, 38, 1159-1187.	10.5	47
17	Desrisking the Cytotoxicity of a Mitochondriotropic Antioxidant Based on Caffeic Acid by a PEGylated Strategy. Bioconjugate Chemistry, 2018, 29, 2723-2733.	3.6	9
18	Electrochemical Behavior of a Mitochondria-Targeted Antioxidant at an Interface between Two Immiscible Electrolyte Solutions: An Alternative Approach to Study Lipophilicity. Analytical Chemistry, 2018, 90, 7989-7996.	6.5	8

SOFIA BENFEITO

#	Article	IF	CITATIONS
19	Development of a Mitochondriotropic Antioxidant Based on Caffeic Acid: Proof of Concept on Cellular and Mitochondrial Oxidative Stress Models. Journal of Medicinal Chemistry, 2017, 60, 7084-7098.	6.4	47
20	Photodamage and photoprotection: toward safety and sustainability through nanotechnology solutions. , 2017, , 527-565.		5
21	Fine-tuning of the hydrophobicity of caffeic acid: studies on the antimicrobial activity against Staphylococcus aureus and Escherichia coli. RSC Advances, 2015, 5, 53915-53925.	3.6	43
22	Bridging the Gap Between Nature and Antioxidant Setbacks: Delivering Caffeic Acid to Mitochondria. Methods in Molecular Biology, 2015, 1265, 73-83.	0.9	2
23	Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity. BioMed Research International, 2014, 2014, 1-10.	1.9	11
24	Nanotechnology and Antioxidant Therapy: An Emerging Approach for Neurodegenerative Diseases. Current Medicinal Chemistry, 2014, 21, 4311-4327.	2.4	18
25	Antioxidant therapy: Still in search of the â€ [~] magic bullet'. Mitochondrion, 2013, 13, 427-435.	3.4	49
26	Exploring nature profits: Development of novel and potent lipophilic antioxidants based on galloyl–cinnamic hybrids. European Journal of Medicinal Chemistry, 2013, 62, 289-296.	5.5	52
27	Host-Guest Interaction between Herbicide Oxadiargyl and Hydroxypropyl-β-Cyclodextrin. Scientific World Journal, The, 2013, 2013, 1-6.	2.1	12
28	Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold. Free Radical Research, 2012, 46, 600-611.	3.3	33