
## Yasuhiro Date

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2224745/publications.pdf Version: 2024-02-01



Υλοιιμίρο Πλτε

| #  | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Relaxometric learning: a pattern recognition method for T2 relaxation curves based on machine learning supported by an analytical framework. BMC Chemistry, 2021, 15, 13.                                                                                                              | 1.6 | 4         |
| 2  | Fish ecotyping based on machine learning and inferred network analysis of chemical and physical properties. Scientific Reports, 2021, 11, 3766.                                                                                                                                        | 1.6 | 10        |
| 3  | Large-Scale Evaluation of Major Soluble Macromolecular Components of Fish Muscle from a<br>Conventional 1H-NMR Spectral Database. Molecules, 2020, 25, 1966.                                                                                                                           | 1.7 | 9         |
| 4  | Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase<br>agricultural crop yield. Proceedings of the National Academy of Sciences of the United States of<br>America, 2020, 117, 14552-14560.                                          | 3.3 | 77        |
| 5  | Application of ensemble deep neural network to metabolomics studies. Analytica Chimica Acta, 2018,<br>1037, 230-236.                                                                                                                                                                   | 2.6 | 44        |
| 6  | Application of a Deep Neural Network to Metabolomics Studies and Its Performance in Determining<br>Important Variables. Analytical Chemistry, 2018, 90, 1805-1810.                                                                                                                     | 3.2 | 101       |
| 7  | Regional feature extraction of various fishes based on chemical and microbial variable selection using machine learning. Analytical Methods, 2018, 10, 2160-2168.                                                                                                                      | 1.3 | 11        |
| 8  | Profiling physicochemical and planktonic features from discretely/continuously sampled surface water. Science of the Total Environment, 2018, 636, 12-19.                                                                                                                              | 3.9 | 9         |
| 9  | Application of kernel principal component analysis and computational machine learning to exploration of metabolites strongly associated with diet. Scientific Reports, 2018, 8, 3426.                                                                                                  | 1.6 | 33        |
| 10 | Systemic Homeostasis in Metabolome, Ionome, and Microbiome of Wild Yellowfin Goby in Estuarine<br>Ecosystem. Scientific Reports, 2018, 8, 3478.                                                                                                                                        | 1.6 | 23        |
| 11 | Environmental metabolomics with data science for investigating ecosystem homeostasis. Progress in<br>Nuclear Magnetic Resonance Spectroscopy, 2018, 104, 56-88.                                                                                                                        | 3.9 | 43        |
| 12 | Oral Administration of Porphyromonas gingivalis Alters the Gut Microbiome and Serum Metabolome.<br>MSphere, 2018, 3, .                                                                                                                                                                 | 1.3 | 134       |
| 13 | Exploratory machine-learned theoretical chemical shifts can closely predict metabolic mixture signals. Chemical Science, 2018, 9, 8213-8220.                                                                                                                                           | 3.7 | 20        |
| 14 | NALT M cells are important for immune induction for the common mucosal immune system.<br>International Immunology, 2017, 29, 471-478.                                                                                                                                                  | 1.8 | 45        |
| 15 | [Dedicated to Prof. T. Okada and Prof. T. Nishioka: data science in chemistry]Visualizing Individual and<br>Region-specific Microbial–metabolite Relations by Important Variable Selection Using Machine<br>Learning Approaches. Journal of Computer Aided Chemistry, 2017, 18, 31-41. | 0.3 | 2         |
| 16 | Exploring the Impact of Food on the Gut Ecosystem Based on the Combination of Machine Learning and Network Visualization. Nutrients, 2017, 9, 1307.                                                                                                                                    | 1.7 | 15        |
| 17 | Meta-Analysis of Fecal Microbiota and Metabolites in Experimental Colitic Mice during the<br>Inflammatory and Healing Phases. Nutrients, 2017, 9, 1329.                                                                                                                                | 1.7 | 100       |
| 18 | Bacterial Substrate Transformation Tracked by Stable-Isotope-Guided NMR Metabolomics: Application<br>in a Natural Aquatic Microbial Community. Metabolites, 2017, 7, 52.                                                                                                               | 1.3 | 11        |

YASUHIRO DATE

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Visualization of Microfloral Metabolism for Marine Waste Recycling. Metabolites, 2016, 6, 7.                                                                                                                                                | 1.3 | 13        |
| 20 | Improvement of physical, chemical and biological properties of aridisol from Botswana by the incorporation of torrefied biomass. Scientific Reports, 2016, 6, 28011.                                                                        | 1.6 | 44        |
| 21 | Fragment Assembly Approach Based on Graph/Network Theory with Quantum Chemistry Verifications<br>for Assigning Multidimensional NMR Signals in Metabolite Mixtures. ACS Chemical Biology, 2016, 11,<br>1030-1038.                           | 1.6 | 21        |
| 22 | SENSI: signal enhancement by spectral integration for the analysis of metabolic mixtures. Chemical Communications, 2016, 52, 2964-2967.                                                                                                     | 2.2 | 21        |
| 23 | SpinCouple: Development of a Web Tool for Analyzing Metabolite Mixtures via Two-Dimensional<br><i>J</i> -Resolved NMR Database. Analytical Chemistry, 2016, 88, 659-665.                                                                    | 3.2 | 61        |
| 24 | Application of Market Basket Analysis for the Visualization of Transaction Data Based on Human<br>Lifestyle and Spectroscopic Measurements. Analytical Chemistry, 2016, 88, 2714-2719.                                                      | 3.2 | 28        |
| 25 | Strengthening of the intestinal epithelial tight junction by <i>Bifidobacterium bifidum</i> .<br>Physiological Reports, 2015, 3, e12327.                                                                                                    | 0.7 | 167       |
| 26 | Metabolic dynamics analysis by massive data integration: application to tsunami-affected field soils in<br>Japan. ACS Chemical Biology, 2015, 10, 1908-1915.                                                                                | 1.6 | 14        |
| 27 | Pretreatment and Integrated Analysis of Spectral Data Reveal Seaweed Similarities Based on Chemical Diversity. Analytical Chemistry, 2015, 87, 2819-2826.                                                                                   | 3.2 | 39        |
| 28 | Human Metabolic, Mineral, and Microbiota Fluctuations Across Daily Nutritional Intake Visualized by<br>a Data-Driven Approach. Journal of Proteome Research, 2015, 14, 1526-1534.                                                           | 1.8 | 28        |
| 29 | Periodontal Disease Bacteria Specific to Tonsil in IgA Nephropathy Patients Predicts the Remission by the Treatment. PLoS ONE, 2014, 9, e81636.                                                                                             | 1.1 | 35        |
| 30 | Biogeochemical Typing of Paddy Field by a Data-Driven Approach Revealing Sub-Systems within a<br>Complex Environment - A Pipeline to Filtrate, Organize and Frame Massive Dataset from Multi-Omics<br>Analyses. PLoS ONE, 2014, 9, e110723. | 1.1 | 22        |
| 31 | Integrated Analysis of Seaweed Components during Seasonal Fluctuation by Data Mining Across<br>Heterogeneous Chemical Measurements with Network Visualization. Analytical Chemistry, 2014, 86,<br>1098-1105.                                | 3.2 | 48        |
| 32 | Comparative Analysis of Chemical and Microbial Profiles in Estuarine Sediments Sampled from Kanto<br>and Tohoku Regions in Japan. Analytical Chemistry, 2014, 86, 5425-5432.                                                                | 3.2 | 39        |
| 33 | In vitro evaluation method for screening of candidate prebiotic foods. Food Chemistry, 2014, 152, 251-260.                                                                                                                                  | 4.2 | 34        |
| 34 | Visualizing microbial dechlorination processes in underground ecosystem by statistical correlation and network analysis approach. Journal of Bioscience and Bioengineering, 2014, 117, 305-309.                                             | 1.1 | 7         |
| 35 | Cellulose Digestion and Metabolism Induced Biocatalytic Transitions in Anaerobic Microbial<br>Ecosystems. Metabolites, 2014, 4, 36-52.                                                                                                      | 1.3 | 21        |
| 36 | Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of<br>Japan. Scientific Reports, 2014, 4, 7005.                                                                                                  | 1.6 | 53        |

YASUHIRO DATE

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches. PeerJ, 2014, 2, e550.                            | 0.9 | 42        |
| 38 | Solid-, Solution-, and Gas-state NMR Monitoring of 13C-Cellulose Degradation in an Anaerobic<br>Microbial Ecosystem. Molecules, 2013, 18, 9021-9033.                                                            | 1.7 | 34        |
| 39 | Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect<br>Biomass Metabolism by Paddy Soil Microbiota. PLoS ONE, 2013, 8, e66919.                                      | 1.1 | 30        |
| 40 | Chemical profiling of complex biochemical mixtures from various seaweeds. Polymer Journal, 2012, 44, 888-894.                                                                                                   | 1.3 | 39        |
| 41 | Concentration of Metabolites from Low-density Planktonic Communities for Environmental<br>Metabolomics using Nuclear Magnetic Resonance Spectroscopy. Journal of Visualized Experiments,<br>2012, , e3163.      | 0.2 | 10        |
| 42 | Metabolic Sequences of Anaerobic Fermentation on Glucose-Based Feeding Substrates Based on<br>Correlation Analyses of Microbial and Metabolite Profiling. Journal of Proteome Research, 2012, 11,<br>5602-5610. | 1.8 | 36        |
| 43 | The Epithelia-Specific Membrane Trafficking Factor AP-1B Controls Gut Immune Homeostasis in Mice.<br>Gastroenterology, 2011, 141, 621-632.                                                                      | 0.6 | 51        |
| 44 | New monitoring approach for metabolic dynamics in microbial ecosystems using<br>stable-isotope-labeling technologies. Journal of Bioscience and Bioengineering, 2010, 110, 87-93.                               | 1.1 | 38        |
| 45 | Microbial diversity of anammox bacteria enriched from different types of seed sludge in an anaerobic<br>continuous-feeding cultivation reactor. Journal of Bioscience and Bioengineering, 2009, 107, 281-286.   | 1.1 | 45        |
| 46 | Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures. FEMS<br>Microbiology Letters, 2008, 282, 32-38.                                                                            | 0.7 | 148       |
| 47 | Microbial community of anammox bacteria immobilized in polyethylene glycol gel carrier. Water<br>Science and Technology, 2008, 58, 1121-1128.                                                                   | 1.2 | 15        |
| 48 | Ammonium removal performance of anaerobic ammonium-oxidizing bacteria immobilized in polyethylene glycol gel carrier. Applied Microbiology and Biotechnology, 2007, 76, 1457-1465.                              | 1.7 | 85        |
| 49 | Psg18 Is Specifically Expressed in Follicle-associated Epithelium. Cell Structure and Function, 2007, 32, 115-126.                                                                                              | O.5 | 9         |
| 50 | Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor. Applied Microbiology and Biotechnology, 2006, 70, 47-52.                                           | 1.7 | 133       |