
Carlos A V Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2224619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1158-1168.	1.1	227
2	Stem cell cultivation in bioreactors. Biotechnology Advances, 2011, 29, 815-829.	6.0	183
3	Scalable Production of Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Under Serum-/Xeno-Free Conditions in a Microcarrier-Based Bioreactor Culture System. Frontiers in Cell and Developmental Biology, 2020, 8, 553444.	1.8	78
4	Transcriptomic analysis of 3D Cardiac Differentiation of Human Induced Pluripotent Stem Cells Reveals Faster Cardiomyocyte Maturation Compared to 2D Culture. Scientific Reports, 2019, 9, 9229.	1.6	77
5	Polyaniline-polycaprolactone blended nanofibers for neural cell culture. European Polymer Journal, 2019, 117, 28-37.	2.6	58
6	Dissolvable Microcarriers Allow Scalable Expansion And Harvesting Of Human Induced Pluripotent Stem Cells Under Xenoâ€Free Conditions. Biotechnology Journal, 2019, 14, e1800461.	1.8	52
7	Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems. Journal of Biotechnology, 2016, 234, 71-82.	1.9	51
8	Strategies for the expansion of human induced pluripotent stem cells as aggregates in single-use Vertical-Wheelâ"¢ bioreactors. Journal of Biological Engineering, 2019, 13, 74.	2.0	49
9	Scalable Manufacturing of Human Mesenchymal Stromal Cells in the Verticalâ€Wheel Bioreactor System: An Experimental and Economic Approach. Biotechnology Journal, 2019, 14, e1800716.	1.8	42
10	Functionalization of Electrospun Nanofibers and Fiber Alignment Enhance Neural Stem Cell Proliferation and Neuronal Differentiation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 580135.	2.0	39
11	Maturation of Human Pluripotent Stem Cell-Derived Cerebellar Neurons in the Absence of Co-culture. Frontiers in Bioengineering and Biotechnology, 2020, 8, 70.	2.0	39
12	Hypoxia enhances proliferation of mouse embryonic stem cellâ€derived neural stem cells. Biotechnology and Bioengineering, 2010, 106, 260-270.	1.7	36
13	Scalable culture of human induced pluripotent cells on microcarriers under xenoâ€free conditions using singleâ€use verticalâ€wheelâ"¢ bioreactors. Journal of Chemical Technology and Biotechnology, 2018, 93, 3597-3606.	1.6	36
14	Effect of Electrical Stimulation Conditions on Neural Stem Cells Differentiation on Cross-Linked PEDOT:PSS Films. Frontiers in Bioengineering and Biotechnology, 2021, 9, 591838.	2.0	35
15	Stem cell bioprocessing for regenerative medicine. Journal of Chemical Technology and Biotechnology, 2014, 89, 34-47.	1.6	30
16	Microcarrier expansion of mouse embryonic stem cellâ€derived neural stem cells in stirred bioreactors. Biotechnology and Applied Biochemistry, 2011, 58, 231-242.	1.4	28
17	Long-term expansion of human induced pluripotent stem cells in a microcarrier-based dynamic system. Journal of Chemical Technology and Biotechnology, 2017, 92, 492-503.	1.6	26
18	Scalable Generation of Mature Cerebellar Organoids from Human Pluripotent Stem Cells and Characterization by Immunostaining. Journal of Visualized Experiments, 2020, , .	0.2	26

CARLOS A V RODRIGUES

#	Article	IF	CITATIONS
19	Scalable Expansion of Human-Induced Pluripotent Stem Cells in Xeno-Free Microcarriers. Methods in Molecular Biology, 2014, 1283, 23-29.	0.4	24
20	Clinicalâ€scale purification of pluripotent stem cell derivatives for cellâ€based therapies. Biotechnology Journal, 2015, 10, 1103-1114.	1.8	23
21	Polyaniline-polycaprolactone fibers for neural applications: Electroconductivity enhanced by pseudo-doping. Materials Science and Engineering C, 2021, 120, 111680.	3.8	23
22	Polybenzimidazole nanofibers for neural stem cell culture. Materials Today Chemistry, 2019, 14, 100185.	1.7	20
23	Transcriptome profiling of human pluripotent stem cellâ€derived cerebellar organoids reveals faster commitment under dynamic conditions. Biotechnology and Bioengineering, 2021, 118, 2781-2803.	1.7	20
24	Integrated Platform for Production and Purification of Human Pluripotent Stem Cell-Derived Neural Precursors. Stem Cell Reviews and Reports, 2014, 10, 151-161.	5.6	18
25	Single-Use Bioreactors for Human Pluripotent and Adult Stem Cells: Towards Regenerative Medicine Applications. Bioengineering, 2021, 8, 68.	1.6	18
26	Nonviral Gene Delivery to Neural Stem Cells with Minicircles by Microporation. Biomacromolecules, 2013, 14, 1379-1387.	2.6	17
27	A value-added exopolysaccharide as a coating agent for MRI nanoprobes. Nanoscale, 2015, 7, 14272-14283.	2.8	17
28	Electrical stimulation of neural-differentiating iPSCs on novel coaxial electroconductive nanofibers. Biomaterials Science, 2021, 9, 5359-5382.	2.6	16
29	Challenges and Solutions for Commercial Scale Manufacturing of Allogeneic Pluripotent Stem Cell Products. Bioengineering, 2020, 7, 31.	1.6	13
30	A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Reviews and Reports, 2021, 17, 748-776.	1.7	13
31	The effect of electrospun scaffolds on the glycosaminoglycan profile of differentiating neural stem cells. Biochimie, 2021, 182, 61-72.	1.3	12
32	PEDOT:PSS-Coated Polybenzimidazole Electroconductive Nanofibers for Biomedical Applications. Polymers, 2021, 13, 2786.	2.0	12
33	Microcarrier Culture Systems for Stem Cell Manufacturing. , 2016, , 77-104.		10
34	Next-Generation Stem Cell Expansion Technologies. Cell & Gene Therapy Insights, 2018, 4, 791-804.	0.1	10
35	Cell Culture Process Scale-Up Challenges for Commercial-Scale Manufacturing of Allogeneic Pluripotent Stem Cell Products. Bioengineering, 2022, 9, 92.	1.6	9
36	Suspension Culture of Human Induced Pluripotent Stem Cells in Single-Use Vertical-Wheelâ,,¢ Bioreactors Using Aggregate and Microcarrier Culture Systems. Methods in Molecular Biology, 2020, 2286, 167-178.	0.4	8

#	Article	IF	CITATIONS
37	Purification of Human Induced Pluripotent Stem Cell-Derived Neural Precursors Using Magnetic Activated Cell Sorting. Methods in Molecular Biology, 2014, 1283, 137-145.	0.4	4
38	Enrichment and Separation Technologies for Stem Cell-Based Therapies. , 2016, , 199-213.		1
39	3D Microwell Platform for Cardiomyocyte Differentiation of Human Pluripotent Stem Cells. Methods in Molecular Biology, 2020, , 1.	0.4	1
40	Design and operation of bioreactor systems for the expansion of pluripotent stem cell-derived neural stem cells. , 2011, , .		0
41	Emerging strategies for scalable human induced pluripotent stem cell expansion and differentiation. , 2021, , 163-185.		0