
Yan Danyliv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2224562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymorphism of derivatives of <i>tert</i> -butyl substituted acridan and perfluorobiphenyl as sky-blue OLED emitters exhibiting aggregation induced thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2018, 6, 13179-13189.	5.5	51
2	<i>N</i> , <i>O π</i> -Conjugated 4-Substituted 1,3-Thiazole BF ₂ Complexes: Synthesis and Photophysical Properties. Journal of Organic Chemistry, 2018, 83, 1095-1105.	3.2	38
3	Through-space charge transfer in luminophore based on phenyl-linked carbazole- and phthalimide moieties utilized in cyan-emitting OLEDs. Dyes and Pigments, 2020, 172, 107833.	3.7	29
4	N-annelated perylenes as effective green emitters for OLEDs. RSC Advances, 2015, 5, 78150-78159.	3.6	21
5	Benzo[4,5]thiazolo[3,2- <i>c</i>][1,3,5,2]oxadiazaborinines: Synthesis, Structural, and Photophysical Properties. Journal of Organic Chemistry, 2018, 83, 12129-12142.	3.2	21
6	Reversibly Switchable Phaseâ€Dependent Emission of Quinoline and Phenothiazine Derivatives towards Applications in Optical Sensing and Information Multicoding. Chemistry - A European Journal, 2021, 27, 2826-2836.	3.3	18
7	Derivatives of carbazole and chloropyridine exhibiting aggregation induced emission enhancement and deep-blue delayed fluorescence. Dyes and Pigments, 2018, 149, 588-596.	3.7	14
8	Application of the Suzuki–Miyaura Reaction for the Postfunctionalization of the Benzo[4,5]thiazolo[3,2- <i>c</i>][1,3,5,2]oxadiazaborinine Core: An Approach toward Fluorescent Dyes. Journal of Organic Chemistry, 2019, 84, 5614-5626.	3.2	14
9	Organolithium-Mediated Postfunctionalization of Thiazolo[3,2- <i>c</i>][1,3,5,2]oxadiazaborinine Fluorescent Dyes. Journal of Organic Chemistry, 2020, 85, 6060-6072.	3.2	13
10	Multifunctional derivatives of pyrimidine-5-carbonitrile and differently substituted carbazoles for doping-free sky-blue OLEDs and luminescent sensors of oxygen. Journal of Advanced Research, 2021, 33, 41-51.	9.5	12
11	Multifunctional derivatives of donor-substituted perfluorobiphenyl for OLEDs and optical oxygen sensors. Dyes and Pigments, 2021, 193, 109493.	3.7	8
12	3,3′-Bicarbazole-based compounds as bipolar hosts for green and red phosphorescent organic light-emitting devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 261, 114662.	3.5	7
13	Enhancement of Hole Extraction Efficiency of Dibenzothiophenes by Substitution Engineering: Toward Additiveâ€Free Perovskite Solar Cells with Power Conversion Efficiency Exceeding 20%. Solar Rrl, 2022, 6, .	5.8	5
14	Synthesis of fused chalcogenophenocarbazoles: towards dual emission resulting from hybridized local and charge-transfer states. New Journal of Chemistry, 2020, 44, 3903-3911.	2.8	4