List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2224420/publications.pdf Version: 2024-02-01

		117625	118850
102	4,374	34	62
papers	citations	h-index	g-index
114	114	114	4968
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology, 2016, 18, 1199-1208.	1.2	566
2	Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 540-557.	6.4	348
3	Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias. Lancet Neurology, The, 2020, 19, 951-962.	10.2	254
4	A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. NeuroImage, 2017, 147, 346-359.	4.2	200
5	Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. NeuroImage, 2014, 84, 206-216.	4.2	170
6	PET imaging in patients with meningioma—report of the RANO/PET Group. Neuro-Oncology, 2017, 19, 1576-1587.	1.2	157
7	PET imaging in patients with brain metastasis—report of the RANO/PET group. Neuro-Oncology, 2019, 21, 585-595.	1.2	139
8	EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1885-1912.	6.4	134
9	Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging. Physics in Medicine and Biology, 2015, 60, 8047-8065.	3.0	104
10	The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy. NeuroImage: Clinical, 2017, 13, 386-394.	2.7	101
11	EANM procedure guidelines for brain PET imaging using [18F]FDG, version 3. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 632-651.	6.4	82
12	Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1509-1525.	6.4	81
13	Deep Learning Based Attenuation Correction of PET/MRI in Pediatric Brain Tumor Patients: Evaluation in a Clinical Setting. Frontiers in Neuroscience, 2018, 12, 1005.	2.8	78
14	Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 378-387.	1.9	75
15	Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro-Oncology, 2021, 23, 881-893.	1.2	75
16	The Usefulness of Dynamic <i>O</i> -(2- ¹⁸ F-Fluoroethyl)-l-Tyrosine PET in the Clinical Evaluation of Brain Tumors in Children and Adolescents. Journal of Nuclear Medicine, 2015, 56, 88-92.	5.0	64
17	Simultaneous evaluation of brain tumour metabolism, structure and blood volume using [18F]-fluoroethyltyrosine (FET) PET/MRI: feasibility, agreement and initial experience. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 103-112.	6.4	60
18	Quantitation of Regional Cerebral Blood Flow Corrected for Partial Volume Effect Using O-15 Water and PET: II. Normal Values and Gray Matter Blood Flow Response to Visual Activation. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1252-1263.	4.3	59

lan Law

#	Article	IF	CITATIONS
19	Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro-Oncology, 2015, 17, 757-763.	1.2	58
20	Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1046-1058.	4.3	55
21	Use of amyloid-PET to determine cutpoints for CSF markers. Neurology, 2016, 86, 50-58.	1.1	54
22	The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 373-381.	6.4	54
23	Estimation of an image derived input function with MR-defined carotid arteries in FDG-PET human studies using a novel partial volume correction method. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1398-1409.	4.3	48
24	Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clinical and Translational Imaging, 2017, 5, 135-149.	2.1	47
25	Al-driven attenuation correction for brain PET/MRI: Clinical evaluation of a dementia cohort and importance of the training group size. Neurolmage, 2020, 222, 117221.	4.2	47
26	Early treatment response evaluation using FET PET compared to MRI in glioblastoma patients at first progression treated with bevacizumab plus lomustine. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 2377-2386.	6.4	45
27	The need of standardization and of large clinical studies in an emerging indication of [18F]FDG PET: the autoimmune encephalitis. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 353-357.	6.4	44
28	Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 603-613.	6.4	44
29	Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion. EJNMMI Physics, 2014, 1, 101.	2.7	42
30	Comparison of simultaneous arterial spin labeling MRI and ¹⁵ O-H ₂ O PET measurements of regional cerebral blood flow in rest and altered perfusion states. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1621-1633.	4.3	42
31	TSPO Imaging in Glioblastoma Multiforme: A Direct Comparison Between ¹²³ I-CLINDE SPECT, ¹⁸ F-FET PET, and Gadolinium-Enhanced MR Imaging. Journal of Nuclear Medicine, 2015, 56, 1386-1390.	5.0	41
32	Comparison of global cerebral blood flow measured by phaseâ€contrast mapping MRI with ¹⁵ Oâ€H ₂ O positron emission tomography. Journal of Magnetic Resonance Imaging, 2017, 45, 692-699.	3.4	41
33	Computed Tomography (CT) Perfusion as an Early Predictive Marker for Treatment Response to Neoadjuvant Chemotherapy in Gastroesophageal Junction Cancer and Gastric Cancer - A Prospective Study. PLoS ONE, 2014, 9, e97605.	2.5	38
34	Recurrent glioblastoma versus late posttreatment changes: diagnostic accuracy of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (18F-FET PET). Neuro-Oncology, 2019, 21, 1595-1606.	1.2	37
35	Somatostatin Receptor–Targeted Radiopeptide Therapy in Treatment-Refractory Meningioma: Individual Patient Data Meta-analysis. Journal of Nuclear Medicine, 2021, 62, 507-513.	5.0	37
36	Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2055-2065.	4.3	33

lan Law

#	Article	IF	CITATIONS
37	Clinical PET/MR Imaging in Dementia and Neuro-Oncology. PET Clinics, 2016, 11, 441-452.	3.0	32
38	Prognostic value of 18F-FET PET imaging in re-irradiation of high-grade glioma: Results of a phase I clinical trial. Radiotherapy and Oncology, 2016, 121, 132-137.	0.6	31
39	Markerless motion tracking and correction for PET, MRI, and simultaneous PET/MRI. PLoS ONE, 2019, 14, e0215524.	2.5	31
40	A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning. Medical Image Analysis, 2019, 54, 220-237.	11.6	31
41	Patterns of failure for patients with glioblastoma following O-(2-[18 F]fluoroethyl)- L -tyrosine PET- and MRI-guided radiotherapy. Radiotherapy and Oncology, 2017, 122, 380-386.	0.6	30
42	Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells. Nature Communications, 2018, 9, 785.	12.8	29
43	Early Postoperative 18F-FET PET/MRI for Pediatric Brain and Spinal Cord Tumors. Journal of Nuclear Medicine, 2019, 60, 1053-1058.	5.0	29
44	Motion correction in simultaneous PET/MR brain imaging using sparsely sampled MR navigators: a clinically feasible tool. EJNMMI Physics, 2015, 2, 14.	2.7	28
45	RESOLUTE PET/MRI Attenuation Correction for O-(2-18F-fluoroethyl)-L-tyrosine (FET) in Brain Tumor Patients with Metal Implants. Frontiers in Neuroscience, 2017, 11, 453.	2.8	27
46	The effect of alternate-day caloric restriction on the metabolic consequences of 8 days of bed rest in healthy lean men: a randomized trial. Journal of Applied Physiology, 2017, 122, 230-241.	2.5	22
47	Toxicity and efficacy of re-irradiation of high-grade glioma in a phase I dose- and volume escalation trial. Radiotherapy and Oncology, 2017, 125, 223-227.	0.6	21
48	Moderate―to highâ€intensity exercise does not modify cortical βâ€amyloid in Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 208-215.	3.7	20
49	Brain Activation During Mental Transformation of Size. Journal of Cognitive Neuroscience, 2000, 12, 763-774.	2.3	19
50	The D313Y variant in the <i>GLA</i> gene – no evidence of a pathogenic role in Fabry disease. Scandinavian Journal of Clinical and Laboratory Investigation, 2017, 77, 617-621.	1.2	19
51	Positron Emission Tomography and Magnetic Resonance Imaging of the Brain in Fabry Disease: A Nationwide, Long-Time, Prospective Follow-Up. PLoS ONE, 2015, 10, e0143940.	2.5	18
52	Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR. EJNMMI Physics, 2015, 2, 8.	2.7	18
53	COVID-19 and the brain: impact on nuclear medicine in neurology. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2487-2492.	6.4	18
54	Non-invasive kinetic modelling of PET tracers with radiometabolites using a constrained simultaneous estimation method: evaluation with 11C-SB201745. EJNMMI Research, 2018, 8, 58.	2.5	17

#	Article	IF	CITATIONS
55	Phase contrast mapping MRI measurements of global cerebral blood flow across different perfusion states – A direct comparison with ¹⁵ O-H ₂ O positron emission tomography using a hybrid PET/MR system. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2368-2378.	4.3	17
56	SCA28: Novel Mutation in the AFG3L2 Proteolytic Domain Causes a Mild Cerebellar Syndrome with Selective Type-1 Muscle Fiber Atrophy. Cerebellum, 2017, 16, 62-67.	2.5	16
57	Interindividual and regional relationship between cerebral blood flow and glucose metabolism in the resting brain. Journal of Applied Physiology, 2018, 125, 1080-1089.	2.5	16
58	Hybrid FDG PET/MRI vs. FDG PET and CT in patients with suspected dementia – A comparison of diagnostic yield and propagated influence on clinical diagnosis and patient management. PLoS ONE, 2019, 14, e0216409.	2.5	16
59	Role of amino-acid PET in high-grade gliomas: limitations and perspectives. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2018, 62, 254-266.	0.7	16
60	Hybrid PET/MRI imaging in healthy unsedated newborn infants with quantitative rCBF measurements using 15O-water PET. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 782-793.	4.3	15
61	A visual rating scale for cingulate island sign on 18F-FDG-PET to differentiate dementia with Lewy bodies and Alzheimer's disease. Journal of the Neurological Sciences, 2020, 410, 116645.	0.6	15
62	PET Imaging in Neurodegeneration and Neuro-oncology: Variants and Pitfalls. Seminars in Nuclear Medicine, 2021, 51, 408-418.	4.6	15
63	Positron Emission Tomography/Magnetic Resonance Hybrid Scanner Imaging of Cerebral Blood Flow Using ¹⁵ O-Water Positron Emission Tomography and Arterial Spin Labeling Magnetic Resonance Imaging in Newborn Piglets. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1703-1710.	4.3	14
64	Presentation of Two Cases with Early Extracranial Metastases from Glioblastoma and Review of the Literature. Case Reports in Oncological Medicine, 2016, 2016, 1-5.	0.3	14
65	Proposal of a new grading system for meningioma resection: the Copenhagen Protocol. Acta Neurochirurgica, 2022, 164, 229-238.	1.7	14
66	Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 3852-3869.	6.4	14
67	Investigational PET tracers in neuro-oncology—What's on the horizon? A report of the PET/RANO group. Neuro-Oncology, 2022, 24, 1815-1826.	1.2	14
68	Validation of kinetic modeling of [150]H2O PET using an image derived input function on hybrid PET/MRI. NeuroImage, 2021, 233, 117950.	4.2	12
69	PET imaging of meningioma with 18F-FLT: a predictor of tumour progression. Brain, 2020, 143, 3308-3317.	7.6	11
70	Diagnostic accuracy and clinical impact of [18F]FET PET in childhood CNS tumors. Neuro-Oncology, 2021, 23, 2107-2116.	1.2	11
71	PET/MR attenuation correction in brain imaging using a continuous bone signal derived from UTE. EJNMMI Physics, 2015, 2, A39.	2.7	10
72	Pharmacokinetic analysis of [68Ga]Ga-DOTA-TOC PET in meningiomas for assessment of in vivo somatostatin receptor subtype 2. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2577-2588.	6.4	10

#	Article	IF	CITATIONS
73	Improved Detection of Postoperative Residual Meningioma with [68Ga]Ga-DOTA-TOC PET Imaging Using a High-resolution Research Tomograph PET Scanner. Clinical Cancer Research, 2021, 27, 2216-2225.	7.0	10
74	Hybrid 2-[18F] FDG PET/MRI in premanifest Huntington's disease gene-expansion carriers: The significance of partial volume correction. PLoS ONE, 2021, 16, e0252683.	2.5	10
75	Evaluating 2-[18F]FDG-PET in differential diagnosis of dementia using a data-driven decision model. NeuroImage: Clinical, 2020, 27, 102267.	2.7	9
76	In vivo imaging of cell proliferation in meningioma using 3′-deoxy-3′-[18F]fluorothymidine PET/MRI. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1496-1509.	6.4	9
77	Automatic correction of dental artifacts in PET/MRI. Journal of Medical Imaging, 2015, 2, 024009.	1.5	8
78	Early changes in perfusion of glioblastoma during radio- and chemotherapy evaluated by T1-dynamic contrast enhanced magnetic resonance imaging. Acta Oncológica, 2015, 54, 1521-1528.	1.8	8
79	Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury. Journal of Neuroscience Methods, 2017, 291, 176-181.	2.5	8
80	Components of day-to-day variability of cerebral perfusion measurements – Analysis of phase contrast mapping magnetic resonance imaging measurements in healthy volunteers. PLoS ONE, 2018, 13, e0197807.	2.5	6
81	Regional and interindividual relationships between cerebral perfusion and oxygen metabolism. Journal of Applied Physiology, 2021, 130, 1836-1847.	2.5	6
82	Prevalence of cognitive impairment and its relation to mental health in Danish lymphoma survivors. Supportive Care in Cancer, 2021, 29, 3319-3328.	2.2	5
83	Comparison of the clinical impact of 2-[18F]FDG-PET and cerebrospinal fluid biomarkers in patients suspected of Alzheimer's disease. PLoS ONE, 2021, 16, e0248413.	2.5	5
84	Finding our way through the labyrinth of dementia biomarkers. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2320-2324.	6.4	5
85	Prognostic value of complementary biomarkers of neurodegeneration in a mixed memory clinic cohort. PeerJ, 2020, 8, e9498.	2.0	5
86	Deep-learning-based attenuation correction in dynamic [¹⁵ 0]H ₂ 0 studies using PET/MRI in healthy volunteers. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3314-3323.	4.3	4
87	Sparsely sampled MR navigators as a practical tool for quality control and correction of head motion in simultaneous PET/MR. EJNMMI Physics, 2014, 1, A36.	2.7	3
88	No evidence for direct effects of recombinant human erythropoietin on cerebral blood flow and metabolism in healthy humans. Journal of Applied Physiology, 2018, 124, 1107-1116.	2.5	3
89	Mania triggered by levodopa treatment in a patient with frontotemporal dementia caused by A C9orf72 repeat expansion: A case report. Clinical Neurology and Neurosurgery, 2020, 198, 106147.	1.4	3
90	Effect of blood glucose and body weight on image quality in brain [18F]FDG PET imaging. Nuclear Medicine Communications, 2020, 41, 1265-1274.	1.1	3

#	Article	IF	CITATIONS
91	Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation (18F-FDG, 64Cu-ATSM and) Tj ETQq1 1 Monitoring. Diagnostics, 2015, 5, 372-382.	0.784314 2.6	rgBT /Over 2
92	Beneficial effect of intravenous immunoglobulin treatment in a patient with antiphospholipid syndrome associated chorea. Journal of the Neurological Sciences, 2018, 390, 52-53.	0.6	2
93	Letter to the Editor. Copenhagen grading of meningioma. Journal of Neurosurgery, 2022, 136, 1506-1508.	1.6	2
94	Quantification and accuracy of clinical [11C]-PiB PET/MRI: the effect of MR-based attenuation correction. EJNMMI Physics, 2014, 1, A69.	2.7	1
95	P4â€184: Shift in Cerebral PET Glucose Metabolism in Frontotemporal Dementia Linked to Chromosome 3 (FTDâ€3) from the Presymptomatic to Symtomatic Stage. Alzheimer's and Dementia, 2016, 12, P1090.	0.8	1
96	RADI-13. EXPERIENCE WITH 18F-FET PET/MRI FOR CNS-TUMORS IN CHILDREN AND ADOLESCENTS. Neuro-Oncology, 2018, 20, i172-i172.	1.2	1
97	RA-07FEASIBILITY OF EARLY POSTOPERATIVE18F-FET PET/MRI AFTER SURGERY FOR BRAIN TUMOR IN PEDIATRIC PATIENTS. Neuro-Oncology, 2016, 18, iii166.2-iii166.	1.2	0
98	NIMG-53. REPEATABILITY OF O-(2-18F-FLUOROETHYL)-L-TYROSINE POSITRON EMISSION TOMOGRAPHY (FET-PET) SCANNING AND THE INFLUENCE OF PROTEIN INTAKE IN GLIOMA. Neuro-Oncology, 2018, 20, vi188-vi188.	1.2	0
99	MNGI-13. DYNAMIC IMAGING OF MENINGIOMA WITH 3'-DEOXY-3'-[18F]-FLUOROTHYMIDINE USING POS EMISSION TOMOGRAPHY: A POSSIBLE PREDICTOR OF TUMOR GROWTH. Neuro-Oncology, 2019, 21, vi142-vi142.	SITRON 1.2	0
100	Novel Homozygous Truncating Variant Widens the Spectrum of Early-Onset Multisystemic SYNE1 Ataxia. Cerebellum, 2021, , 1.	2.5	0
101	Case 24: Progressive Clioma. , 2022, , 119-123.		Ο

102 Brain Imaging. , 2015, , .

0