
John Graham Carroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2224339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oocyte mitochondria—key regulators of oocyte function and potential therapeutic targets for improving fertility. Biology of Reproduction, 2022, 106, 366-377.	2.7	27
2	Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary. Science Advances, 2022, 8, .	10.3	54
3	Depletion of oocyte dynamin-related protein 1 shows maternal-effect abnormalities in embryonic development. Science Advances, 2022, 8, .	10.3	9
4	HENMT1 is involved in the maintenance of normal female fertility in the mouse. Molecular Human Reproduction, 2021, 27, .	2.8	2
5	Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes. Human Reproduction, 2021, 36, 771-784.	0.9	54
6	Covalent Aurora A regulation by the metabolic integrator coenzyme A. Redox Biology, 2020, 28, 101318.	9.0	45
7	Changes in subcellular structures and states of Pumilio1 regulate the translation of target <i>Mad2</i> and <i>Cyclin B1</i> mRNAs. Journal of Cell Science, 2020, 133, .	2.0	10
8	The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation. Molecular Human Reproduction, 2019, 25, 695-705.	2.8	66
9	Electrical-assisted microinjection for analysis of fertilization and cell division in mammalian oocytes and early embryos. Methods in Cell Biology, 2018, 144, 431-440.	1.1	14
10	Oocyte Meiotic Resumption Upon Puberty. , 2018, , 167-171.		0
11	Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis II. Nature Communications, 2017, 8, 15346.	12.8	45
12	Cyclin A2 modulates kinetochore–microtubule attachment in meiosis II. Journal of Cell Biology, 2017, 216, 3133-3143.	5.2	30
13	Label-free in vivo Raman microspectroscopic imaging of the macromolecular architecture of oocytes. Scientific Reports, 2017, 7, 8945.	3.3	28
14	Identification of an activation site in Bak and mitochondrial Bax triggered by antibodies. Nature Communications, 2016, 7, 11734.	12.8	50
15	Cytoplasmic Determination of Meiotic Spindle Size Revealed by a Unique Inter-Species Germinal Vesicle Transfer Model. Scientific Reports, 2016, 6, 19827.	3.3	12
16	Novel Role for p110β PI 3-Kinase in Male Fertility through Regulation of Androgen Receptor Activity in Sertoli Cells. PLoS Genetics, 2015, 11, e1005304.	3.5	35
17	Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development (Cambridge), 2015, 142, 681-691.	2.5	223
18	DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age. Nature Communications, 2015, 6, 8706.	12.8	114

JOHN GRAHAM CARROLL

#	Article	IF	CITATIONS
19	Measurement of ATP in Single Oocytes: Impact of Maturation and Cumulus Cells on Levels and Consumption. Journal of Cellular Physiology, 2014, 229, 353-361.	4.1	124
20	Dual-mode regulation of the APC/C by CDK1 and MAPK controls meiosis I progression and fidelity. Journal of Cell Biology, 2014, 204, 891-900.	5.2	29
21	Polarized Cdc42 activation promotes polar body protrusion and asymmetric division in mouse oocytes. Developmental Biology, 2013, 377, 202-212.	2.0	88
22	Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. Journal of Cell Science, 2013, 126, 2955-64.	2.0	123
23	The DNA damage response in mammalian oocytes. Frontiers in Genetics, 2013, 4, 117.	2.3	72
24	Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. Development (Cambridge), 2013, 140, e1508-e1508.	2.5	0
25	Oocytes Progress beyond Prophase in the Presence of DNA Damage. Current Biology, 2012, 22, 989-994.	3.9	104
26	A Spindle Assembly Checkpoint Protein Functions in Prophase I Arrest and Prometaphase Progression. Science, 2009, 326, 991-994.	12.6	158
27	Mitochondrial function and redox state in mammalian embryos. Seminars in Cell and Developmental Biology, 2009, 20, 346-353.	5.0	214
28	Securin regulates entry into M-phase by modulating the stability of cyclin B. Nature Cell Biology, 2008, 10, 445-451.	10.3	82
29	Developmentally acquired PKA localisation in mouse oocytes and embryos. Developmental Biology, 2008, 317, 36-45.	2.0	25
30	Regulation of cytosolic and mitochondrial ATP levels in mouse eggs and zygotes. Developmental Biology, 2008, 316, 431-440.	2.0	52
31	Constitutive PtdIns(3,4,5) <i>P</i> 3 synthesis promotes the development and survival of early mammalian embryos. Development (Cambridge), 2008, 135, 425-429.	2.5	37
32	Prophase I arrest and progression to metaphase I in mouse oocytes are controlled by Emi1-dependent regulation of APCCdh1. Journal of Cell Biology, 2007, 176, 65-75.	5.2	98
33	Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Developmental Biology, 2007, 305, 133-144.	2.0	136
34	Rac Activity Is Polarized and Regulates Meiotic Spindle Stability and Anchoring in Mammalian Oocytes. Developmental Cell, 2007, 12, 309-317.	7.0	141
35	The Role of Mitochondrial Function in the Oocyte and Embryo. Current Topics in Developmental Biology, 2007, 77, 21-49.	2.2	433
36	Regulation of redox metabolism in the mouse oocyte and embryo. Development (Cambridge), 2007, 134, 455-465.	2.5	201

JOHN GRAHAM CARROLL

#	Article	IF	CITATIONS
37	An increase in [Ca2+]i is sufficient but not necessary for driving mitosis in early mouse embryos. Journal of Cell Science, 2005, 118, 4563-4575.	2.0	22
38	The dynamics of cyclin B1 distribution during meiosis I in mouse oocytes. Reproduction, 2004, 128, 153-162.	2.6	63
39	Sperm-triggered [Ca2+] oscillations and Ca2+homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development (Cambridge), 2004, 131, 3057-3067.	2.5	209
40	Conventional PKCs regulate the temporal pattern of Ca2+ oscillations at fertilization in mouse eggs. Journal of Cell Biology, 2004, 164, 1033-1044.	5.2	82
41	Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCζ. Journal of Cell Science, 2004, 117, 2513-2521.	2.0	126
42	Ca2+ signalling and cortical re-organisation during the transition from meiosis to mitosis in mammalian oocytes. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2004, 115, S61-S67.	1.1	10
43	Fertilization and InsP3-induced Ca2+ release stimulate a persistent increase in the rate of degradation of cyclin B1 specifically in mature mouse oocytes. Developmental Biology, 2004, 272, 26-38.	2.0	36
44	Cell Cycle-dependent Regulation of Structure of Endoplasmic Reticulum and Inositol 1,4,5-Trisphosphate-induced Ca2+Release in Mouse Oocytes and Embryos. Molecular Biology of the Cell, 2003, 14, 288-301.	2.1	78
45	Ca2+ oscillations at fertilization in mammals are regulated by the formation of pronuclei. Development (Cambridge), 2003, 130, 1461-1472.	2.5	114
46	Calcium wave pacemakers in eggs. Journal of Cell Science, 2002, 115, 3557-3564.	2.0	80
47	The Ability to Develop an Activity That Transfers Histones onto Sperm Chromatin Is Acquired with Meiotic Competence during Oocyte Growth. Developmental Biology, 2002, 241, 195-206.	2.0	30
48	Follicle-Stimulating Hormone Induces a Gap Junction-Dependent Dynamic Change in [cAMP] and Protein Kinase A in Mammalian Oocytes. Developmental Biology, 2002, 246, 441-454.	2.0	125
49	The dynamics of plasma membrane PtdIns(4,5) <i>P</i> 2 at fertilization of mouse eggs. Journal of Cell Science, 2002, 115, 2139-2149.	2.0	60
50	The dynamics of plasma membrane PtdIns(4,5)P(2) at fertilization of mouse eggs. Journal of Cell Science, 2002, 115, 2139-49.	2.0	50
51	The initiation and regulation of Ca2+signalling at fertilization in mammals. Seminars in Cell and Developmental Biology, 2001, 12, 37-43.	5.0	74
52	The ability to generate normal Ca2+ transients in response to spermatozoa develops during the final stages of oocyte growth and maturation. Human Reproduction, 2000, 15, 1389-1395.	0.9	48
53	Inositol 1,4,5-Trisphosphate Receptors Are Downregulated in Mouse Oocytes in Response to Sperm or Adenophostin A but Not to Increases in Intracellular Ca2+ or Egg Activation. Developmental Biology, 2000, 223, 251-265.	2.0	120
54	Epigenetic Modifications Necessary for Normal Development Are Established During Oocyte Growth in Mice1. Biology of Reproduction, 2000, 62, 616-621.	2.7	153

JOHN GRAHAM CARROLL

#	Article	IF	CITATIONS
55	Expression of Inositol 1,4,5-Trisphosphate Receptors in Mouse Oocytes and Early Embryos: The Type I Isoform Is Upregulated in Oocytes and Downregulated after Fertilization. Developmental Biology, 1998, 203, 451-461.	2.0	111
56	Parthenogenetic Activation of Mouse Oocytes by Strontium Journal of Mammalian Ova Research, 1998, 15, 146-152.	0.1	5
57	Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nature Genetics, 1996, 13, 91-94.	21.4	247
58	Development of oocyte banks and systems for the in-vitro development of oocytes: future directions for the treatment of infertility. Human Reproduction, 1996, 11, 159-168.	0.9	12
59	Ionomycin, Thapsigargin, Ryanodine, and Sperm Induced Ca2+ Release Increase during Meiotic Maturation of Mouse Oocytes. Journal of Biological Chemistry, 1995, 270, 6671-6677.	3.4	171
60	High Rates of Survival and Fertilization of Mouse and Hamster Oocytes after Vitrification in Dimethylsulphoxide1. Biology of Reproduction, 1993, 49, 489-495.	2.7	63
61	Fertilization and early embryology: The role of calcium in mammalian oocyte maturation and egg activation. Human Reproduction, 1993, 8, 1274-1281.	0.9	135
62	Physiology: Transplantation of frozen—thawed mouse primordial follicles. Human Reproduction, 1993, 8, 1163-1167.	0.9	216
63	Egg activation: initiation and decoding of Ca2+ signaling. , 0, , 177-186.		0