
Jakob Balslev SÃ, rensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/222414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Control of the Releasable Vesicle Pools by SNAP-25 Splice Variants and SNAP-23. Cell, 2003, 114, 75-86.	13.5	316
2	Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes. Science, 2010, 330, 502-505.	6.0	278
3	Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO Journal, 2006, 25, 955-966.	3.5	251
4	Synaptotagmin-1 Docks Secretory Vesicles to Syntaxin-1/SNAP-25 Acceptor Complexes. Cell, 2009, 138, 935-946.	13.5	242
5	Plasmalemmal Phosphatidylinositol-4,5-Bisphosphate Level Regulates the Releasable Vesicle Pool Size in Chromaffin Cells. Journal of Neuroscience, 2005, 25, 2557-2565.	1.7	208
6	Regulation of Releasable Vesicle Pool Sizes by Protein Kinase A-Dependent Phosphorylation of SNAP-25. Neuron, 2004, 41, 417-429.	3.8	204
7	CAPS-1 and CAPS-2 Are Essential Synaptic Vesicle Priming Proteins. Cell, 2007, 131, 796-808.	13.5	176
8	Vesicle Docking in Regulated Exocytosis. Traffic, 2008, 9, 1414-1424.	1.3	175
9	Protein Kinase C-Dependent Phosphorylation of Synaptosome-Associated Protein of 25 kDa at Ser ¹⁸⁷ Potentiates Vesicle Recruitment. Journal of Neuroscience, 2002, 22, 9278-9286.	1.7	167
10	Synaptotagmin-1 and -7 are functionally overlapping Ca ²⁺ sensors for exocytosis in adrenal chromaffin cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3998-4003.	3.3	167
11	The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1627-1632.	3.3	156
12	Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO Journal, 2006, 25, 3725-3737.	3.5	156
13	Differential Control of Adrenal and Sympathetic Catecholamine Release by α2-Adrenoceptor Subtypes. Molecular Endocrinology, 2003, 17, 1640-1646.	3.7	147
14	Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Archiv European Journal of Physiology, 2004, 448, 347-62.	1.3	142
15	Differential Abilities of SNAP-25 Homologs to Support Neuronal Function. Journal of Neuroscience, 2007, 27, 9380-9391.	1.7	121
16	Synaptobrevin N-terminally bound to syntaxin–SNAP-25 defines the primed vesicle state in regulated exocytosis. Journal of Cell Biology, 2010, 188, 401-413.	2.3	115
17	Munc18-Bound Syntaxin Readily Forms SNARE Complexes with Synaptobrevin in Native Plasma Membranes. PLoS Biology, 2006, 4, e330.	2.6	113
18	Munc18-1: Sequential Interactions with the Fusion Machinery Stimulate Vesicle Docking and Priming. Journal of Neuroscience, 2007, 27, 8676-8686.	1.7	110

#	Article	IF	CITATIONS
19	Different Effects on Fast Exocytosis Induced by Synaptotagmin 1 and 2 Isoforms and Abundance But Not by Phosphorylation. Journal of Neuroscience, 2006, 26, 632-643.	1.7	108
20	The role of the C terminus of the SNARE protein SNAP-25 in fusion pore opening and a model for fusion pore mechanics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15388-15392.	3.3	101
21	Examining Synaptotagmin 1 Function in Dense Core Vesicle Exocytosis under Direct Control of Ca2+. Journal of General Physiology, 2003, 122, 265-276.	0.9	100
22	Conflicting Views on the Membrane Fusion Machinery and the Fusion Pore. Annual Review of Cell and Developmental Biology, 2009, 25, 513-537.	4.0	97
23	Genetic analysis of synaptotagmin-7 function in synaptic vesicle exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3986-3991.	3.3	95
24	SNARE complexes prepare for membrane fusion. Trends in Neurosciences, 2005, 28, 453-455.	4.2	88
25	Role of the synaptobrevin C terminus in fusion pore formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18463-18468.	3.3	84
26	SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron, 2020, 107, 22-37.	3.8	77
27	Synaptotagmin Interaction with SNAP-25 Governs Vesicle Docking, Priming, and Fusion Triggering. Journal of Neuroscience, 2013, 33, 14417-14430.	1.7	68
28	Complexin II plays a positive role in Ca ²⁺ -triggered exocytosis by facilitating vesicle priming. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19538-19543.	3.3	64
29	Multiple Ca2+ sensors in secretion: teammates, competitors or autocrats?. Trends in Neurosciences, 2011, 34, 487-497.	4.2	64
30	Alternative Splicing of SNAP-25 Regulates Secretion through Nonconservative Substitutions in the SNARE Domain. Molecular Biology of the Cell, 2005, 16, 5675-5685.	0.9	61
31	Munc18-1 phosphorylation by protein kinase C potentiates vesicle pool replenishment in bovine chromaffin cells. Neuroscience, 2006, 143, 487-500.	1.1	57
32	The SNAP-25 Protein Family. Neuroscience, 2019, 420, 50-71.	1.1	57
33	C2â€domain containing calcium sensors in neuroendocrine secretion. Journal of Neurochemistry, 2016, 139, 943-958.	2.1	52
34	Synaptotagmin-7 Is an Asynchronous Calcium Sensor for Synaptic Transmission in Neurons Expressing SNAP-23. PLoS ONE, 2014, 9, e114033.	1.1	51
35	Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate. ELife, 2015, 4, e05531.	2.8	50
36	Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5095-5100.	3.3	48

Jakob Balslev SÃ,rensen

#	Article	IF	CITATIONS
37	Extension of Helix 12 in Munc18-1 Induces Vesicle Priming. Journal of Neuroscience, 2016, 36, 6881-6891.	1.7	47
38	Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis. ELife, 2015, 4, .	2.8	47
39	Analysis of the sodium recirculation theory of solute oupled water transport in small intestine. Journal of Physiology, 2002, 542, 33-50.	1.3	46
40	Opposing functions of two sub-domains of the SNARE-complex in neurotransmission. EMBO Journal, 2010, 29, 2477-2490.	3.5	44
41	Interactions Between SNAP-25 and Synaptotagmin-1 Are Involved in Vesicle Priming, Clamping Spontaneous and Stimulating Evoked Neurotransmission. Journal of Neuroscience, 2016, 36, 11865-11880.	1.7	43
42	Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. ELife, 2017, 6, .	2.8	39
43	Innervation by a GABAergic Neuron Depresses Spontaneous Release in Glutamatergic Neurons and Unveils the Clamping Phenotype of Synaptotagmin-1. Journal of Neuroscience, 2014, 34, 2100-2110.	1.7	37
44	Deletion of the S3–S4 Linker in theShaker Potassium Channel Reveals Two Quenching Groups near the outside of S4. Journal of General Physiology, 2000, 115, 209-222.	0.9	35
45	A Sequential Vesicle Pool Model with a Single Release Sensor and a Ca2+-Dependent Priming Catalyst Effectively Explains Ca2+-Dependent Properties of Neurosecretion. PLoS Computational Biology, 2013, 9, e1003362.	1.5	35
46	A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute. Journal of General Physiology, 2000, 116, 101-124.	0.9	34
47	The <scp>SNARE</scp> protein vti1a functions in denseâ€core vesicle biogenesis. EMBO Journal, 2014, 33, 1681-1697.	3.5	34
48	Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion. Pflugers Archiv European Journal of Physiology, 2001, 442, 1-11.	1.3	33
49	Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca2+ channel distances. ELife, 2020, 9, .	2.8	33
50	The SNAP-25 Linker as an Adaptation Toward Fast Exocytosis. Molecular Biology of the Cell, 2008, 19, 3769-3781.	0.9	32
51	The BAR Domain Protein PICK1 Controls Vesicle Number and Size in Adrenal Chromaffin Cells. Journal of Neuroscience, 2014, 34, 10688-10700.	1.7	32
52	SNARE Requirements En Route to Exocytosis: from Many to Few. Journal of Molecular Neuroscience, 2012, 48, 387-394.	1.1	31
53	Heterogeneity of chloride channels in the apical membrane of isolated mitochondria-rich cells from toad skin Journal of General Physiology, 1996, 108, 421-433.	0.9	29
54	Rab3 Proteins Involved in Vesicle Biogenesis and Priming in Embryonic Mouse Chromaffin Cells. Traffic, 2010, 11, 1415-1428.	1.3	28

#	Article	IF	CITATIONS
55	Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs. ELife, 2017, 6, .	2.8	26
56	Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin. Nature Communications, 2020, 11, 1266.	5.8	26
57	A Coiled Coil Trigger Site Is Essential for Rapid Binding of Synaptobrevin to the SNARE Acceptor Complex. Journal of Biological Chemistry, 2010, 285, 21549-21559.	1.6	25
58	A Post-Docking Role of Synaptotagmin 1-C2B Domain Bottom Residues R398/399 in Mouse Chromaffin Cells. Journal of Neuroscience, 2015, 35, 14172-14182.	1.7	24
59	An Electrostatic Energy Barrier for SNARE-Dependent Spontaneous and Evoked Synaptic Transmission. Cell Reports, 2019, 26, 2340-2352.e5.	2.9	24
60	Patch Clamp on the Luminal Membrane of Exocrine Gland Acini from Frog Skin (Rana esculenta) Reveals the Presence of Cystic Fibrosis Transmembrane Conductance Regulator–like Clâ~' Channels Activated by Cyclic AMP. Journal of General Physiology, 1998, 112, 19-31.	0.9	22
61	Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca2+-dependent priming. ELife, 2021, 10, .	2.8	22
62	Regulation of Ca ²⁺ channels by SNAP-25 via recruitment of syntaxin-1 from plasma membrane clusters. Molecular Biology of the Cell, 2016, 27, 3329-3341.	0.9	21
63	The calcium sensor synaptotagmin 1 is expressed and regulated in hippocampal postsynaptic spines. Hippocampus, 2017, 27, 1168-1177.	0.9	17
64	Doc2b Synchronizes Secretion from Chromaffin Cells by Stimulating Fast and Inhibiting Sustained Release. Journal of Neuroscience, 2013, 33, 16459-16470.	1.7	15
65	Comment on "Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebratesâ€: Physical Review X, 2017, 7, .	2.8	7
66	MUNC18-1 regulates the submembrane F-actin network, independently of syntaxin1 targeting, via hydrophobicity in β-sheet 10. Journal of Cell Science, 2019, 132, .	1.2	7
67	The soluble neurexin-1β ectodomain causes calcium influx and augments dendritic outgrowth and synaptic transmission. Scientific Reports, 2020, 10, 18041.	1.6	7
68	Measurements of Exocytosis by Capacitance and Calcium Uncaging in Mouse Adrenal Chromaffin Cells. Methods in Molecular Biology, 2021, 2233, 233-251.	0.4	6
69	Spatial distribution and temporal evolution of DRONPA-fused SNAP25 clusters in adrenal chromaffin cells. Photochemical and Photobiological Sciences, 2015, 14, 1005-1012.	1.6	5
70	Ride the wave: Retrograde trafficking becomes Ca2+ dependent with BAIAP3. Journal of Cell Biology, 2017, 216, 1887-1889.	2.3	4
71	SNAP-25 phosphorylation at Ser187 is not involved in Ca2+ or phorbolester-dependent potentiation of synaptic release. Molecular and Cellular Neurosciences, 2020, 102, 103452.	1.0	3

Fusion Machinery: SNARE Protein Complex. , 2015, , 87-127.

#	Article	IF	CITATIONS
73	A method of modelling time dependent data: swimming in guppies (Poecilia Reticulata) under threat of a predator. Behavioural Processes, 1994, 31, 75-96.	0.5	1
74	Probing the Interaction Between Synaptotagmin-1 and SNARES using Mutations in SNAP-25. Biophysical Journal, 2015, 108, 102a.	0.2	0
75	Cover Image, Volume 27, Issue 11. Hippocampus, 2017, 27, C1.	0.9	Ο
76	Synaptobrevin N-terminally bound to syntaxin–SNAP-25 defines the primed vesicle state in regulated exocytosis. Journal of General Physiology, 2010, 135, i2-i2.	0.9	0
77	Introducing the special issue on "Proteins and Circuits in Memory― European Journal of Neuroscience, 2021, 54, 6691-6695.	1.2	0