
José Manuel Delgado Lòpez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2224006/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic/inorganic hydrogels by simultaneous self-assembly and mineralization of aromatic short-peptides. Inorganic Chemistry Frontiers, 2022, 9, 743-752.	6.0	11
2	Year, watering regime and foliar methyl jasmonate doped nanoparticles treatments: Effects on must nitrogen compounds in Monastrell grapes. Scientia Horticulturae, 2022, 297, 110944.	3.6	7
3	Magneto-optical hyperthermia agents based on probiotic bacteria loaded with magnetic and gold nanoparticles. Nanoscale, 2022, 14, 5716-5724.	5.6	9
4	Effects of Methyl Jasmonate and Nano-Methyl Jasmonate Treatments on Monastrell Wine Volatile Composition. Molecules, 2022, 27, 2878.	3.8	8
5	On the amorphous layer in bone mineral and biomimetic apatite: A combined small- and wide-angle X-ray scattering analysis. Acta Biomaterialia, 2021, 120, 167-180.	8.3	20
6	Towards a more sustainable viticulture: foliar application of Nâ€doped calcium phosphate nanoparticles on Tempranillo grapes. Journal of the Science of Food and Agriculture, 2021, 101, 1307-1313.	3.5	38
7	Urea-functionalized amorphous calcium phosphate nanofertilizers: optimizing the synthetic strategy towards environmental sustainability and manufacturing costs. Scientific Reports, 2021, 11, 3419.	3.3	40
8	Biomimetic Mineralization Promotes Viability and Differentiation of Human Mesenchymal Stem Cells in a Perfusion Bioreactor. International Journal of Molecular Sciences, 2021, 22, 1447.	4.1	9
9	Photoluminescent Coordination Polymers Based on Group 12 Metals and 1H-Indazole-6-Carboxylic Acid. Inorganics, 2021, 9, 20.	2.7	5
10	Probiotic cellulose: Antibiotic-free biomaterials with enhanced antibacterial activity. Acta Biomaterialia, 2021, 124, 244-253.	8.3	23
11	Urea-Doped Calcium Phosphate Nanoparticles as Sustainable Nitrogen Nanofertilizers for Viticulture: Implications on Yield and Quality of Pinot Gris Grapevines. Agronomy, 2021, 11, 1026.	3.0	26
12	Two-Sided Antibacterial Cellulose Combining Probiotics and Silver Nanoparticles. Molecules, 2021, 26, 2848.	3.8	6
13	Nanoelicitors with prolonged retention and sustained release to produce beneficial compounds in wines. Environmental Science: Nano, 2021, 8, 3524-3535.	4.3	14
14	Effect of Methyl Jasmonate Doped Nanoparticles on Nitrogen Composition of Monastrell Grapes and Wines. Biomolecules, 2021, 11, 1631.	4.0	14
15	Engineering Biomimetic Calcium Phosphate Nanoparticles: A Green Synthesis of Slow-Release Multinutrient (NPK) Nanofertilizers. ACS Applied Bio Materials, 2020, 3, 1344-1353.	4.6	89
16	2D-Coordination polymers based on 1 <i>H</i> -indazole-4-carboxylic acid and transition metal ions: magnetic, luminescence and biological properties. CrystEngComm, 2020, 22, 5086-5095.	2.6	8
17	The role of nanoparticle structure and morphology in the dissolution kinetics and nutrient release of nitrate-doped calcium phosphate nanofertilizers. Scientific Reports, 2020, 10, 12396.	3.3	26
18	Highly stable luminescent europium-doped calcium phosphate nanoparticles for creatinine quantification. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111337.	5.0	20

#	Article	IF	CITATIONS
19	Reducing Nitrogen Dosage in Triticum durum Plants with Urea-Doped Nanofertilizers. Nanomaterials, 2020, 10, 1043.	4.1	44
20	Combined Effect of Citrate and Fluoride Ions on Hydroxyapatite Nanoparticles. Crystal Growth and Design, 2020, 20, 3163-3172.	3.0	16
21	Entrapping Living Probiotics into Collagen Scaffolds: A New Class of Biomaterials for Antibioticâ€Free Therapy of Bacterial Vaginosis. Advanced Materials Technologies, 2020, 5, 2000137.	5.8	9
22	Antiparasitic, anti-inflammatory and cytotoxic activities of 2D coordination polymers based on 1H-indazole-5-carboxylic acid. Journal of Inorganic Biochemistry, 2020, 208, 111098.	3.5	11
23	Catalytic and Electron Conducting Carbon Nanotube–Reinforced Lysozyme Crystals. Advanced Functional Materials, 2019, 29, 1807351.	14.9	25
24	Atmospheric water triggers supramolecular gel formation of novel low molecular weight maslinic and oleanolic triterpenic derivatives. Materials Chemistry Frontiers, 2019, 3, 2637-2646.	5.9	10
25	Role of citrate in the formation of enamel-like calcium phosphate oriented nanorod arrays. CrystEngComm, 2019, 21, 4684-4689.	2.6	10
26	Iron nanoparticles-based supramolecular hydrogels to originate anisotropic hybrid materials with enhanced mechanical strength. Materials Chemistry Frontiers, 2018, 2, 686-699.	5.9	46
27	Seeding from silica-reinforced lysozyme crystals for neutron crystallography. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1200-1207.	2.3	3
28	Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization. Scientific Reports, 2018, 8, 17016.	3.3	90
29	On the surface effects of citrates on nano-apatites: evidence of a decreased hydrophilicity. Scientific Reports, 2017, 7, 8901.	3.3	29
30	The synergic role of collagen and citrate in stabilizing amorphous calcium phosphate precursors with platy morphology. Acta Biomaterialia, 2017, 49, 555-562.	8.3	41
31	Control Over Nanocrystalline Apatite Formation: What Can the X-Ray Total Scattering Approach Tell Us. , 2017, , 211-225.		6
32	Biomimetic mineralization of recombinant collagen type I derived protein to obtain hybrid matrices for bone regeneration. Journal of Structural Biology, 2016, 196, 138-146.	2.8	33
33	Crystallization of citrate-stabilized amorphous calcium phosphate to nanocrystalline apatite: a surface-mediated transformation. CrystEngComm, 2016, 18, 3170-3173.	2.6	60
34	Bioinspired Citrate–Apatite Nanocrystals Doped with Divalent Transition Metal Ions. Crystal Growth and Design, 2016, 16, 145-153.	3.0	32
35	Raman identification of Fe precipitates and evaluation of As fate during phase transformation in Tinto and Odiel River Basins. Chemical Geology, 2015, 398, 22-31.	3.3	19
36	Growth Behavior of Monohydrocalcite (CaCO3·H2O) in Silica-Rich Alkaline Solution. Crystal Growth and Design, 2015, 15, 564-572.	3.0	17

#	Article	IF	CITATIONS
37	Monoclonal Antibody-Targeted Fluorescein-5-isothiocyanate-Labeled Biomimetic Nanoapatites: A Promising Fluorescent Probe for Imaging Applications. Langmuir, 2015, 31, 1766-1775.	3.5	26
38	Synthesis and Preliminary <i>in Vivo</i> Evaluation of Well-Dispersed Biomimetic Nanocrystalline Apatites Labeled with Positron Emission Tomographic Imaging Agents. ACS Applied Materials & Interfaces, 2015, 7, 10623-10633.	8.0	42
39	The growth mechanism of apatite nanocrystals assisted by citrate: relevance to bone biomineralization. CrystEngComm, 2015, 17, 507-511.	2.6	58
40	Crystal Size, Morphology, and Growth Mechanism in Bioâ€Inspired Apatite Nanocrystals. Advanced Functional Materials, 2014, 24, 1090-1099.	14.9	93
41	Apatites: Crystal Size, Morphology, and Growth Mechanism in Bio-Inspired Apatite Nanocrystals (Adv.) Tj ETQq1 1	9.784314 14.9	l rgBT /Over
42	Transient Calcium Carbonate Hexahydrate (Ikaite) Nucleated and Stabilized in Confined Nano- and Picovolumes. Crystal Growth and Design, 2014, 14, 792-802.	3.0	28
43	pH-responsive collagen fibrillogenesis in confined droplets induced by vapour diffusion. Journal of Materials Science: Materials in Medicine, 2014, 25, 2305-2312.	3.6	9
44	Evolution of calcium phosphate precipitation in hanging drop vapor diffusion by in situ Raman microspectroscopy. CrystEngComm, 2013, 15, 2206.	2.6	36
45	Crystallization of monohydrocalcite in a silica-rich alkaline solution. CrystEngComm, 2013, 15, 6526.	2.6	12
46	Cell Surface Receptor Targeted Biomimetic Apatite Nanocrystals for Cancer Therapy. Small, 2013, 9, 3834-3844.	10.0	76
47	Bio-inspired citrate-functionalized apatite thin films crystallized on Ti–6Al–4V implants pre-coated with corrosion resistant layers. Journal of Inorganic Biochemistry, 2013, 127, 261-268.	3.5	8
48	Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Progress in Crystal Growth and Characterization of Materials, 2013, 59, 1-46.	4.0	219
49	Magnetic Bioactive and Biodegradable Hollow Fe-Doped Hydroxyapatite Coated Poly(<scp>l</scp> -lactic) Acid Micro-nanospheres. Chemistry of Materials, 2013, 25, 2610-2617.	6.7	70
50	pH-Responsive Delivery of Doxorubicin from Citrate–Apatite Nanocrystals with Tailored Carbonate Content. Langmuir, 2013, 29, 8213-8221.	3.5	88
51	In situ infrared study of adenine adsorption on gold electrodes in acid media. Electrochimica Acta, 2012, 82, 534-542.	5.2	22
52	Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomaterialia, 2012, 8, 3491-3499.	8.3	134
53	Preparation of core–shell poly(l-lactic) acid-nanocrystalline apatite hollow microspheres for bone repairing applications. Journal of Materials Science: Materials in Medicine, 2012, 23, 2659-2669.	3.6	18
54	Vibrational Spectroscopies for Surface Characterization of Biomaterials. , 2012, , 130-152.		0

#	Article	IF	CITATIONS
55	Amino Acidic Control of Calcium Phosphate Precipitation by Using the Vapor Diffusion Method in Microdroplets. Crystal Growth and Design, 2011, 11, 4802-4809.	3.0	41
56	Formation of calcium phosphates by vapour diffusion in highly concentrated ionic microâ€droplets. Crystal Research and Technology, 2011, 46, 841-846.	1.3	16
57	Biomimetic carbonate-apatite nanoparticles functionalized with doxorubicin for applications in nanomedicine. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C280-C280.	0.3	Ο
58	Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study. Electrochimica Acta, 2010, 55, 2055-2064.	5.2	23
59	<i>In Situ</i> Observation of Step Dynamics on Gypsum Crystals. Crystal Growth and Design, 2010, 10, 3909-3916.	3.0	54
60	Theoretical and Spectroelectrochemical Studies on the Adsorption and Oxidation of Glyoxylate and Hydrated Glyoxylate Anions at Gold Electrodes. Journal of Physical Chemistry C, 2010, 114, 12554-12564.	3.1	19
61	DFT and In-Situ Spectroelectrochemical Study of the Adsorption of Fluoroacetate Anions at Gold Electrodes. Journal of Physical Chemistry C, 2009, 113, 989-1000.	3.1	26
62	Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies. Journal of Electroanalytical Chemistry, 2008, 617, 130-140.	3.8	67
63	Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes. Electrochimica Acta, 2008, 53, 2309-2321.	5.2	53
64	Formate Adsorption onto Thin Films of Rutile TiO ₂ Nanorods and Nanowires. Langmuir, 2008, 24, 14035-14041.	3.5	13
65	In Situ Infrared Study of the Adsorption and Surface Acidâ `Base Properties of the Anions of Dicarboxylic Acids at Gold Single Crystal and Thin-Film Electrodes. Journal of Physical Chemistry C, 2007, 111, 9943-9952.	3.1	40
66	B3LYP and in Situ ATR-SEIRAS Study of the Infrared Behavior and Bonding Mode of Adsorbed Acetate Anions on Silver Thin-Film Electrodes. Journal of Physical Chemistry C, 2007, 111, 14476-14483.	3.1	42
67	A comparison between chemical and sputtering methods for preparing thin-film silver electrodes for in situ ATR-SEIRAS studies. Electrochimica Acta, 2007, 52, 4605-4613.	5.2	31
68	In-Situ Infrared Study of the Adsorption and Oxidation of Oxalic Acid at Single-Crystal and Thin-Film Gold Electrodes:Â A Combined External Reflection Infrared and ATRâ^'SEIRAS Approach. Langmuir, 2006, 22, 7192-7202.	3.5	55
69	ATRâ^'SEIRAS Study of the Adsorption of Acetate Anions at Chemically Deposited Silver Thin Film Electrodes. Langmuir, 2005, 21, 8809-8816.	3.5	42