Å**ž**hika Sena Bayazit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2223797/publications.pdf Version: 2024-02-01

		430442	395343
39	1,173	18	33
papers	citations	h-index	g-index
39	39	39	1628
all docs	docs citations	times ranked	citing authors
an docs	uoes citations	umes rankeu	citing autions

#	Article	IF	CITATIONS
1	Enhanced photoelectrochemical activity of magnetically modified TiO2 prepared by a simple ex-situ route. Journal of Solid State Electrochemistry, 2022, 26, 245-255.	1.2	2
2	Preparation of chromium fumarate metal-organic frameworks for removal of pharmaceutical compounds from water. Korean Journal of Chemical Engineering, 2022, 39, 638-645.	1.2	1
3	Enhanced & effective phosphate recovery from water by indium fumarate & zirconium fumarate metal-organic frameworks: Synthesis, characterization, adsorption, kinetic and isotherm studies. Surfaces and Interfaces, 2022, 29, 101719.	1.5	5
4	Magnetic carbon composites as regenerable and fully recoverable adsorbents: Performance on the removal of antidiabetic agent metformin hydrochloride. Chemical Engineering Research and Design, 2021, 168, 443-452.	2.7	13
5	Acid-modulated zirconium based metal organic frameworks for removal of organic micropollutants. Journal of Environmental Chemical Engineering, 2020, 8, 103901.	3.3	11
6	Recovery of β-Carotene on Graphene Nanoplatelets UiO-66 Nanocomposites. Journal of Chemical & Engineering Data, 2020, 65, 821-827.	1.0	6
7	Removal of carbamazepine using UiO-66 and UiO-66/graphene nanoplatelet composite. Journal of Environmental Chemical Engineering, 2020, 8, 103898.	3.3	28
8	Preparation of magnetic activated carbon-chitosan nanocomposite for crystal violet adsorption. Korean Journal of Chemical Engineering, 2019, 36, 1915-1921.	1.2	17
9	Recovery of polyphenols from water using Zr-based metal-organic frameworks and their nanocomposites with graphene nanoplatelets. Journal of Industrial and Engineering Chemistry, 2019, 78, 164-171.	2.9	12
10	Preparation of CeO 2 nanofibers derived from Ce-BTC metal-organic frameworks and its application on pesticide adsorption. Journal of Molecular Liquids, 2018, 255, 10-17.	2.3	42
11	Chitosan grafted SiO2–Fe3O4 nanoparticles for removal of antibiotics from water. Environmental Science and Pollution Research, 2018, 25, 36661-36670.	2.7	27
12	Investigation of extractive interaction between ionic liquids and carbamazepine. Journal of Molecular Liquids, 2018, 268, 523-528.	2.3	6
13	Oxalic acid removal from wastewater using multi-walled carbon nanotubes: Kinetic and equilibrium analysis. Journal of Dispersion Science and Technology, 2017, 38, 65-69.	1.3	1
14	Rapid adsorptive removal of naphthalene from water using graphene nanoplatelet/MIL-101 (Cr) nanocomposite. Journal of Alloys and Compounds, 2017, 701, 740-749.	2.8	49
15	Comparison of different polymeric resins for naproxen removal from wastewater. Journal of Molecular Liquids, 2017, 241, 633-637.	2.3	17
16	Removal of ciprofloxacin from aqueous solution using humic acid- and levulinic acid- coated Fe3O4 nanoparticles. Chemical Engineering Research and Design, 2017, 123, 259-267.	2.7	35
17	Preparation of magnetic MIL-101 (Cr) for efficient removal of ciprofloxacin. Environmental Science and Pollution Research, 2017, 24, 25452-25461.	2.7	68
18	Efficient removal of antibiotics by a novel magnetic adsorbent: Magnetic activated carbon/chitosan (MACC) nanocomposite. Journal of Molecular Liquids, 2017, 240, 589-596.	2.3	153

Åžahika Sena Bayazit

#	Article	IF	CITATIONS
19	Adsorptive removal of malachite green and Rhodamine B dyes on Fe ₃ O ₄ /activated carbon composite. Journal of Dispersion Science and Technology, 2017, 38, 1556-1562.	1.3	32
20	Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. Journal of Industrial and Engineering Chemistry, 2016, 36, 198-205.	2.9	121
21	Isolation of naproxen from wastewater using carbon-based magnetic adsorbents. International Journal of Environmental Science and Technology, 2015, 12, 3541-3550.	1.8	42
22	Investigation of Safranin O adsorption on superparamagnetic iron oxide nanoparticles (SPION) and multi-wall carbon nanotube/SPION composites. Desalination and Water Treatment, 2014, 52, 6966-6975.	1.0	19
23	Hexavalent chromium adsorption on superparamagnetic multi-wall carbon nanotubes and activated carbon composites. Chemical Engineering Research and Design, 2014, 92, 2725-2733.	2.7	112
24	Adsorption of Cu (II) ions from water by carbon nanotubes oxidized with UV-light and ultrasonication. Journal of Molecular Liquids, 2014, 199, 559-564.	2.3	24
25	Magnetic Multi-Wall Carbon Nanotubes for Methyl Orange Removal from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies. Separation Science and Technology, 2014, 49, 1389-1400.	1.3	35
26	Magnetite decorated multi-walled carbon nanotubes for removal of toxic dyes from aqueous solutions. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	41
27	Adsorption of Pb(II) ions from aqueous solutions by carbon nanotubes oxidized different methods. Journal of Industrial and Engineering Chemistry, 2013, 19, 2064-2071.	2.9	38
28	A comperative study for adsorption of methylene blue from aqueous solutions by two kinds of amberlite resin materials. Desalination and Water Treatment, 2012, 45, 206-214.	1.0	12
29	Investigation of Adsorption Equilibrium and Kinetics of Propionic Acid and Glyoxylic Acid from Aqueous Solution by Alumina. Journal of Chemical & Engineering Data, 2011, 56, 3301-3308.	1.0	9
30	Adsorption of Lactic Acid from Model Fermentation Broth onto Activated Carbon and Amberlite IRA-67. Journal of Chemical & Engineering Data, 2011, 56, 1751-1754.	1.0	46
31	Separation of Succinic Acid from Aqueous Solution by Alumina Adsorption. Journal of Chemical & Engineering Data, 2011, 56, 4449-4453.	1.0	12
32	Comparison of the Efficiencies of Amine Extractants on Lactic Acid with Different Organic Solvents. Journal of Chemical & Engineering Data, 2011, 56, 750-756.	1.0	8
33	Investigation of Formic Acid Separation from Aqueous Solution by Reactive Extraction: Effects of Extractant and Diluent. Journal of Chemical & Engineering Data, 2010, 55, 1519-1522.	1.0	55
34	Purification of Biotechnological Carboxylic Acids with an Adsorption Method Using Single-Walled Carbon Nanotubes. Journal of Chemical & Engineering Data, 2010, 55, 5663-5668.	1.0	8
35	Adsorption of Glutaric Acid and Glyoxylic Acid onto Weakly Basic Ion-Exchange Resin: Equilibrium and Kinetics. Journal of Chemical & Engineering Data, 2010, 55, 679-684.	1.0	6
36	Adsorption Equilibrium Data for Acetic Acid and Glycolic Acid onto Amberlite IRA-67. Journal of Chemical & Engineering Data, 2010, 55, 1295-1299.	1.0	27

#	Article	IF	CITATIONS
37	Comparative Equilibrium Studies for Citric Acid by Amberlite LA-2 or Tridodecylamine (TDA). Journal of Chemical & Engineering Data, 2009, 54, 1991-1996.	1.0	18
38	Comparison of Solidâ^'Liquid Equilibrium Data for the Adsorption of Propionic Acid and Tartaric Acid from Aqueous Solution onto Amberlite IRA-67. Industrial & Engineering Chemistry Research, 2009, 48, 7767-7772.	1.8	14
39	Solid–liquid equilibrium of glycolic acid with alumina. Desalination and Water Treatment, 0, , 1-6.	1.0	1