
Eduardo de la Fuente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2223764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science, 2017, 358, 911-914.	12.6	303
2	The 2HWC HAWC Observatory Gamma-Ray Catalog. Astrophysical Journal, 2017, 843, 40.	4.5	200
3	Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory. Astrophysical Journal, 2017, 843, 39.	4.5	159
4	Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays. Astroparticle Physics, 2013, 50-52, 26-32.	4.3	156
5	Multiple Galactic Sources with Emission Above 56ÂTeV Detected by HAWC. Physical Review Letters, 2020, 124, 021102.	7.8	143
6	The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653.	3.0	133
7	On the sensitivity of the HAWC observatory to gamma-ray bursts. Astroparticle Physics, 2012, 35, 641-650.	4.3	100
8	3HWC: The Third HAWC Catalog of Very-high-energy Gamma-Ray Sources. Astrophysical Journal, 2020, 905, 76.	4.5	99
9	Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC. Astrophysical Journal, 2019, 881, 134.	4.5	98
10	SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564. Astrophysical Journal, Supplement Series, 2012, 202, 10.	7.7	73
11	OBSERVATION OF SMALL-SCALE ANISOTROPY IN THE ARRIVAL DIRECTION DISTRIBUTION OF TeV COSMIC RAYS WITH HAWC. Astrophysical Journal, 2014, 796, 108.	4.5	71
12	Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory. Astrophysical Journal, 2018, 853, 154.	4.5	69
13	HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon. Nature Astronomy, 2021, 5, 465-471.	10.1	62
14	All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500ÂTeV. Physical Review D, 2017, 96, .	4.7	56
15	THE FIRST <i>FERMI</i> MULTIFREQUENCY CAMPAIGN ON BL LACERTAE: CHARACTERIZING THE LOW-ACTIVITY STATE OF THE EPONYMOUS BLAZAR. Astrophysical Journal, 2011, 730, 101.	4.5	52
16	HAWC J2227+610 and Its Association with G106.3+2.7, a New Potential Galactic PeVatron. Astrophysical Journal Letters, 2020, 896, L29.	8.3	48
17	Spectral optical monitoring of 3C 390.3 in 1995–2007. Astronomy and Astrophysics, 2010, 517, A42.	5.1	43
18	Daily Monitoring of TeV Gamma-Ray Emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC. Astrophysical Journal, 2017, 841, 100.	4.5	39

2

Eduardo de la Fuente

#	Article	IF	CITATIONS
19	Sensitivity of HAWC to high-mass dark matter annihilations. Physical Review D, 2014, 90, .	4.7	38
20	A search for dark matter in the Galactic halo with HAWC. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 049-049.	5.4	36
21	Evidence of 200 TeV Photons from HAWC J1825-134. Astrophysical Journal Letters, 2021, 907, L30.	8.3	34
22	SEARCH FOR TeV GAMMA-RAY EMISSION FROM POINT-LIKE SOURCES IN THE INNER GALACTIC PLANE WITH A PARTIAL CONFIGURATION OF THE HAWC OBSERVATORY. Astrophysical Journal, 2016, 817, 3.	4.5	33
23	Evidence that Ultra-high-energy Gamma Rays Are a Universal Feature near Powerful Pulsars. Astrophysical Journal Letters, 2021, 911, L27.	8.3	32
24	SEARCH FOR GAMMA-RAYS FROM THE UNUSUALLY BRIGHT GRB 130427A WITH THE HAWC GAMMA-RAY OBSERVATORY. Astrophysical Journal, 2015, 800, 78.	4.5	30
25	Search for Very High-energy Gamma Rays from the Northern Fermi Bubble Region with HAWC. Astrophysical Journal, 2017, 842, 85.	4.5	28
26	U Geminorum: A Test Case for Orbital Parameter Determination. Astronomical Journal, 2007, 134, 262-273.	4.7	26
27	Milagro limits and HAWC sensitivity for the rate-density of evaporating Primordial Black Holes. Astroparticle Physics, 2015, 64, 4-12.	4.3	24
28	Framework for Estimating Travel Time, Distance, Speed, and Street Segment Level of Service (LOS), based on GPS Data. Procedia Technology, 2013, 7, 61-70.	1.1	19
29	Kinematic study at the H α line in the north-eastern region of the Galactic supernova remnant IC 443. Monthly Notices of the Royal Astronomical Society, 2017, 472, 51-54.	4.4	16
30	The HAWC Real-time Flare Monitor for Rapid Detection of Transient Events. Astrophysical Journal, 2017, 843, 116.	4.5	16
31	Data acquisition architecture and online processing system for the HAWC gamma-ray observatory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888, 138-146.	1.6	16
32	TeV Emission of Galactic Plane Sources with HAWC and H.E.S.S Astrophysical Journal, 2021, 917, 6.	4.5	15
33	Revisiting 2D numerical models for the 19th century outbursts of η Carinae. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1141-1148.	4.4	14
34	Spectrum and Morphology of the Very-high-energy Source HAWC J2019+368. Astrophysical Journal, 2021, 911, 143.	4.5	14
35	A Survey of Active Galaxies at TeV Photon Energies with the HAWC Gamma-Ray Observatory. Astrophysical Journal, 2021, 907, 67.	4.5	13
36	Kinematics of Herbig-Haro Objects and Jets in the Orion Nebula. Astronomical Journal, 2001, 122, 1928-1937.	4.7	13

#	Article	IF	CITATIONS
37	Search for Very-high-energy Emission from Gamma-Ray Bursts Using the First 18 Months of Data from the HAWC Gamma-Ray Observatory. Astrophysical Journal, 2017, 843, 88.	4.5	12
38	A CCD Photometric and Morphological Study of the Extended Halo and Filaments of ESO 383â€45: A Galaxy Undergoing Ram Pressure Stripping, or a Tidal Merger Remnant?. Astrophysical Journal, 2005, 624, 680-692.	4.5	11
39	VAMOS: A pathfinder for the HAWC gamma-ray observatory. Astroparticle Physics, 2015, 62, 125-133.	4.3	11
40	Simulated X-ray emission from a single-explosion model for a supernova remnant 3C 400.2. Monthly Notices of the Royal Astronomical Society, 2006, 371, 369-374.	4.4	10
41	Ultracompact H <scp>ii</scp> regions with extended emission: the complete view. Monthly Notices of the Royal Astronomical Society, 2020, 492, 895-914.	4.4	10
42	Probing the Sea of Cosmic Rays by Measuring Gamma-Ray Emission from Passive Giant Molecular Clouds with HAWC. Astrophysical Journal, 2021, 914, 106.	4.5	9
43	Detectability of southern gamma-ray sources beyond 100 TeV with ALPAQUITA, the prototype experiment of ALPACA. Experimental Astronomy, 2021, 52, 85-107.	3.7	9
44	Multimessenger Gamma-Ray and Neutrino Coincidence Alerts Using HAWC and IceCube Subthreshold Data. Astrophysical Journal, 2021, 906, 63.	4.5	9
45	Long-term Spectra of the Blazars Mrk 421 and Mrk 501 at TeV Energies Seen by HAWC. Astrophysical Journal, 2022, 929, 125.	4.5	8
46	Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gammaâ€ray Flash Signatures. Geophysical Research Letters, 2021, 48, e2020GL090033.	4.0	7
47	Decreasing Density Gradients in Circumnuclear HiiRegions of Barred Galaxies NGC 1022, NGC 1326, and NGC 4314. Astrophysical Journal, 2000, 544, 277-282.	4.5	7
48	The quantity of dark matter in early-type galaxies and its relation to the environment. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1320-1331.	4.4	5
49	Ultracompact HÂii regions with extended emission: the case of G43.89–0.78 and its molecular environment. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4436-4447.	4.4	4
50	Gamma/hadron separation with the HAWC observatory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1039, 166984.	1.6	3
51	The unusual interacting pair of galaxies IC 3481 and IC 3481A: An optical-NIR photometric and spectroscopic analysis. New Astronomy, 2009, 14, 556-566.	1.8	2
52	Shearing interferometer with adjustable optical path difference for exoplanet detection. Proceedings of SPIE, 2016, , .	0.8	2
53	HAWC as a Ground-Based Space-Weather Observatory. Solar Physics, 2021, 296, 1.	2.5	2
54	The High Altitude Water ÄŒerenkov (HAWC) TeV Gamma Ray Observatory. Thirty Years of Astronomical Discovery With UKIRT, 2013, , 439-446.	0.3	2

Eduardo de la Fuente

#	Article	IF	CITATIONS
55	<i>BVRI</i> photometric analysis for the galaxy group NGC 4410. Astronomy and Astrophysics, 2008, 485, 435-449.	5.1	2
56	Interplanetary Magnetic Flux Rope Observed at Ground Level by HAWC. Astrophysical Journal, 2020, 905, 73.	4.5	2
57	Proper motions of water masers in the star-forming region IRAS 23139+5939. Publication of the Astronomical Society of Japan, 0, , .	2.5	2
58	Characterization of the background for a neutrino search with the HAWC observatory. Astroparticle Physics, 2022, 137, 102670.	4.3	2
59	Full-Sky Analysis of Cosmic-Ray Anisotropy with IceCube and HAWC. , 2016, , .		1
60	Pressure and density gradients in H II Regions. Astrophysics and Space Science, 2001, 277, 71-74.	1.4	0
61	Lenticular galaxies in the process of evolution. Proceedings of the International Astronomical Union, 2007, 3, 135-136.	0.0	0
62	The Hot Molecular Core of G12.21–0.10: NH3(4, 4) Observations. Proceedings of the International Astronomical Union, 2009, 5, 319-320.	0.0	0
63	Optical characterization of the 62-cm telescope at the Severo Diaz Galindo Observatory in Guadalajara. , 2009, , .		Ο
64	Optics and the mechanical system of the 62-cm telescope at the Severo DÃaz Galindo Observatory in Guadalajara, Jalisco, México. Proceedings of SPIE, 2012, , .	0.8	0
65	PMS and ZAMS stars associated with the dark cloud LDN 1655. New Astronomy, 2013, 18, 42-49.	1.8	Ο
66	An efficient computational phase extraction from arbitrary phase-shifted fringes patterns. Proceedings of SPIE, 2016, , .	0.8	0
67	Deep Optical Imaging of ESO 383–45: A Galaxy Undergoing Ram-pressure Stripping, or a Tidal Merger Remnant?. Globular Clusters - Guides To Galaxies, 2007, , 139-143.	0.1	0
68	The Extended Emission of Ultracompact HII Regions: An Overview and New Observations. Thirty Years of Astronomical Discovery With UKIRT, 2009, , 1-8.	0.3	0
69	Cosmic Ray Astrophysics using The High Altitude Water Cherenkov (HAWC) Observatory in México. EPJ Web of Conferences, 2017, 145, 02002.	0.3	Ο
70	Probing the Extragalactic Mid-infrared Background with HAWC. Astrophysical Journal, 2022, 933, 223.	4.5	0