Pushkar Shrestha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2223390/publications.pdf

Version: 2024-02-01

40 2,170 23
papers citations h-inc

23 41
h-index g-index

41 41 all docs citations

41 times ranked 1939 citing authors

#	Article	IF	CITATIONS
1	Engineering docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in <i>Brassica juncea</i> Plant Biotechnology Journal, 2022, 20, 19-21.	8.3	8
2	<scp><i>Sesamum indicum</i></scp> Oleosin L improves oil packaging in <i>Nicotiana benthamiana</i> leaves. Plant Direct, 2021, 5, e343.	1.9	7
3	Lipid metabolic differences in cows producing small or large milk fat globules: Fatty acid origin and degree of saturation. Journal of Dairy Science, 2020, 103, 1920-1930.	3.4	10
4	Improvement of the Canola Oil Degumming Process by Applying a Megasonic Treatment. Industrial Crops and Products, 2020, 158, 112992.	5.2	7
5	Engineering Trienoic Fatty Acids into Cottonseed Oil Improves Low-Temperature Seed Germination, Plant Photosynthesis and Cotton Fiber Quality. Plant and Cell Physiology, 2020, 61, 1335-1347.	3.1	24
6	Development of a Brassica napus (Canola) Crop Containing Fish Oil-Like Levels of DHA in the Seed Oil. Frontiers in Plant Science, 2020, 11, 727.	3.6	45
7	A Synergistic Genetic Engineering Strategy Induced Triacylglycerol Accumulation in Potato (Solanum) Tj ETQq1 1 (0,784314	rgBT /Overla
8	Improved canola oil expeller extraction using a pilot-scale continuous flow microwave system for pre-treatment of seeds and flaked seeds. Journal of Food Engineering, 2020, 284, 110053.	5.2	12
9	Upâ€regulation of lipid biosynthesis increases the oil content in leaves of <i>Sorghum bicolor</i> Plant Biotechnology Journal, 2019, 17, 220-232.	8.3	75
10	Comparison of the Substrate Preferences of ω3 Fatty Acid Desaturases for Long Chain Polyunsaturated Fatty Acids. International Journal of Molecular Sciences, 2019, 20, 3058.	4.1	5
11	Upregulated Lipid Biosynthesis at the Expense of Starch Production in Potato (Solanum tuberosum) Vegetative Tissues via Simultaneous Downregulation of ADP-Glucose Pyrophosphorylase and Sugar Dependent1 Expressions. Frontiers in Plant Science, 2019, 10, 1444.	3.6	19
12	Increased DHA Production in Seed Oil Using a Selective Lysophosphatidic Acid Acyltransferase. Frontiers in Plant Science, 2018, 9, 1234.	3.6	10
13	Liquid chromatography-mass spectrometry based approach for rapid comparison of lysophosphatidic acid acyltransferase activity on multiple substrates. Journal of Chromatography A, 2018, 1572, 100-105.	3.7	3
14	Genetic enhancement of oil content in potato tuber (<i>Solanum tuberosum</i> L.) through an integrated metabolic engineering strategy. Plant Biotechnology Journal, 2017, 15, 56-67.	8.3	68
15	Step changes in leaf oil accumulation via iterative metabolic engineering. Metabolic Engineering, 2017, 39, 237-246.	7.0	98
16	Genetic enhancement of palmitic acid accumulation in cotton seed oil through <scp>RNA</scp> i downâ€regulation of <i>gh<scp>KAS</scp>2</i> encoding βâ€ketoacylâ€ <scp>ACP</scp> synthase <scp>II</scp> (<scp>KASII</scp>). Plant Biotechnology Journal, 2017, 15, 132-143.	8.3	50
17	Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow (Triadica sebifera). Frontiers in Plant Science, 2017, 8, 1339.	3.6	37
18	Reduced Triacylglycerol Mobilization during Seed Germination and Early Seedling Growth in Arabidopsis Containing Nutritionally Important Polyunsaturated Fatty Acids. Frontiers in Plant Science, 2016, 7, 1402.	3.6	21

#	Article	IF	CITATIONS
19	Stable expression of silencingâ€suppressor protein enhances the performance and longevity of an engineered metabolic pathway. Plant Biotechnology Journal, 2016, 14, 1418-1426.	8.3	11
20	A case study on the genetic origin of the high oleic acid trait through FAD2-1 DNA sequence variation in safflower (Carthamus tinctorius L.). Frontiers in Plant Science, 2015, 6, 691.	3.6	11
21	Expression of Mouse MGAT in Arabidopsis Results in Increased Lipid Accumulation in Seeds. Frontiers in Plant Science, 2015, 6, 1180.	3.6	11
22	Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA. Frontiers in Plant Science, 2014, 5, 419.	3.6	22
23	Metabolic engineering of biomass for high energy density: oilseedâ€like triacylglycerol yields from plant leaves. Plant Biotechnology Journal, 2014, 12, 231-239.	8.3	256
24	Characterization of Oilseed Lipids from "DHA-Producing Camelina sativa― A New Transformed Land Plant Containing Long-Chain Omega-3 Oils. Nutrients, 2014, 6, 776-789.	4.1	46
25	Metabolic Engineering Camelina sativa with Fish Oil-Like Levels of DHA. PLoS ONE, 2014, 9, e85061.	2.5	155
26	AtDGAT2 is a functional acylâ€CoA:diacylglycerol acyltransferase and displays different acylâ€CoA substrate preferences than AtDGAT1. FEBS Letters, 2013, 587, 2371-2376.	2.8	71
27	Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. FEBS Letters, 2013, 587, 364-369.	2.8	172
28	Rapid expression and validation of seed-specific constructs in transgenic LEC2 induced somatic embryos of Brassica napus. Plant Cell, Tissue and Organ Culture, 2013, 113, 543-553.	2.3	26
29	Modification of Seed Oil Composition in Arabidopsis by Artificial microRNA-Mediated Gene Silencing. Frontiers in Plant Science, 2012, 3, 168.	3.6	41
30	Recruiting a New Substrate for Triacylglycerol Synthesis in Plants: The Monoacylglycerol Acyltransferase Pathway. PLoS ONE, 2012, 7, e35214.	2.5	45
31	Transgenic production of arachidonic acid in oilseeds. Transgenic Research, 2012, 21, 139-147.	2.4	27
32	Metabolic Engineering Plant Seeds with Fish Oil-Like Levels of DHA. PLoS ONE, 2012, 7, e49165.	2.5	126
33	Mechanistic and Structural Insights into the Regioselectivity of an Acyl-CoA Fatty Acid Desaturase via Directed Molecular Evolution. Journal of Biological Chemistry, 2011, 286, 12860-12869.	3.4	39
34	Isolation and Characterisation of a High-Efficiency Desaturase and Elongases from Microalgae for Transgenic LC-PUFA Production. Marine Biotechnology, 2010, 12, 430-438.	2.4	47
35	Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA Δ6-desaturase with ω3-preference from the marine microalga Micromonas pusilla. Metabolic Engineering, 2010, 12, 233-240.	7.0	118
36	ISOLATION OF THREE NOVEL LONG-CHAIN POLYUNSATURATED FATTY ACID Δ9-ELONGASES AND THE TRANSGENIC ASSEMBLY OF THE ENTIRE PAVLOVA SALINA DOCOSAHEXAENOIC ACID PATHWAY IN NICOTIANA BENTHAMIANA1. Journal of Phycology, 2010, 46, 917-925.	2.3	19

#	Article	IF	CITATION
37	Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production. Plant Methods, 2010, 6, 8.	4.3	67
38	A leafâ€based assay using interchangeable design principles to rapidly assemble multistep recombinant pathways. Plant Biotechnology Journal, 2009, 7, 914-924.	8.3	120
39	Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1738, 63-71.	2.4	109
40	NITROGEN STARVATION INDUCES THE ACCUMULATION OF ARACHIDONIC ACID IN THE FRESHWATER GREEN ALGA PARIETOCHLORIS INCISA (TREBUXIOPHYCEAE)1. Journal of Phycology, 2002, 38, 991-994.	2.3	112