
Jiangxin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2223205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Stretchable Piezoresistive Graphene–Nanocellulose Nanopaper for Strain Sensors. Advanced Materials, 2014, 26, 2022-2027.	21.0	1,009
2	Extremely Stretchable Strain Sensors Based on Conductive Selfâ€Healing Dynamic Crossâ€Links Hydrogels for Humanâ€Motion Detection. Advanced Science, 2017, 4, 1600190.	11.2	728
3	Next-Generation Multifunctional Electrochromic Devices. Accounts of Chemical Research, 2016, 49, 1469-1476.	15.6	516
4	Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nature Communications, 2018, 9, 4280.	12.8	433
5	Stretchable and Wearable Electrochromic Devices. ACS Nano, 2014, 8, 316-322.	14.6	399
6	Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors. Advanced Energy Materials, 2016, 6, 1501882.	19.5	391
7	Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy, 2015, 12, 258-267.	16.0	360
8	Stretchable Graphene Thermistor with Tunable Thermal Index. ACS Nano, 2015, 9, 2130-2137.	14.6	293
9	Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. ACS Applied Materials & Interfaces, 2016, 8, 521-529.	8.0	284
10	Flexible and Highly Scalable V ₂ 0 ₅ â€rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices. Advanced Energy Materials, 2014, 4, 1400236.	19.5	276
11	Sulfidation of NiMn‣ayered Double Hydroxides/Graphene Oxide Composites toward Supercapacitor Electrodes with Enhanced Performance. Advanced Energy Materials, 2016, 6, 1501745.	19.5	254
12	Highly Stretchable and Selfâ€Deformable Alternating Current Electroluminescent Devices. Advanced Materials, 2015, 27, 2876-2882.	21.0	238
13	Wearable Allâ€Fabricâ€Based Triboelectric Generator for Water Energy Harvesting. Advanced Energy Materials, 2017, 7, 1701243.	19.5	220
14	Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy, 2018, 44, 248-255.	16.0	216
15	Printable Superelastic Conductors with Extreme Stretchability and Robust Cycling Endurance Enabled by Liquidâ€Metal Particles. Advanced Materials, 2018, 30, e1706157.	21.0	208
16	Ultra-large optical modulation of electrochromic porous WO ₃ film and the local monitoring of redox activity. Chemical Science, 2016, 7, 1373-1382.	7.4	198
17	Extremely Stretchable Electroluminescent Devices with Ionic Conductors. Advanced Materials, 2016, 28, 4490-4496.	21.0	193
18	Hexagonal Boron Nitride Thin Film for Flexible Resistive Memory Applications. Advanced Functional Materials. 2016. 26. 2176-2184.	14.9	167

JIANGXIN WANG

#	Article	IF	CITATIONS
19	Inorganic–organic hybrid polymer with multiple redox for high-density data storage. Chemical Science, 2014, 5, 3404-3408.	7.4	164
20	An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure. Advanced Materials, 2014, 26, 943-950.	21.0	163
21	Deformable conductors for human–machine interface. Materials Today, 2018, 21, 508-526.	14.2	163
22	Recent Progress in Artificial Muscles for Interactive Soft Robotics. Advanced Materials, 2021, 33, e2003088.	21.0	139
23	A Stretchable and Transparent Nanocomposite Nanogenerator for Self-Powered Physiological Monitoring. ACS Applied Materials & Interfaces, 2017, 9, 42200-42209.	8.0	131
24	Stretchable Silverâ€Zinc Batteries Based on Embedded Nanowire Elastic Conductors. Advanced Energy Materials, 2014, 4, 1301396.	19.5	127
25	Molecular Level Assembly for High-Performance Flexible Electrochromic Energy-Storage Devices. ACS Energy Letters, 2020, 5, 1159-1166.	17.4	126
26	Synthesis, Characterization, and Nonâ€Volatile Memory Device Application of an Nâ€Substituted Heteroacene. Chemistry - an Asian Journal, 2014, 9, 779-783.	3.3	123
27	High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale, 2014, 6, 10734-10739.	5.6	99
28	Fast charging self-powered electric double layer capacitor. Journal of Power Sources, 2017, 342, 70-78.	7.8	98
29	A Deformable and Highly Robust Ethyl Cellulose Transparent Conductor with a Scalable Silver Nanowires Bundle Micromesh. Advanced Materials, 2018, 30, e1802803.	21.0	95
30	Self-healable sticky porous elastomer for gas-solid interacted power generation. Science Advances, 2020, 6, eabb4246.	10.3	88
31	Direct Observation of Indium Conductive Filaments in Transparent, Flexible, and Transferable Resistive Switching Memory. ACS Nano, 2017, 11, 1712-1718.	14.6	83
32	A Highâ€Performance Lithiumâ€ion Capacitor Based on 2D Nanosheet Materials. Small, 2017, 13, 1602893.	10.0	70
33	Rewritable Multilevel Memory Performance of a Tetraazatetracene Donor–Acceptor Derivative with Good Endurance. Chemistry - an Asian Journal, 2015, 10, 116-119.	3.3	65
34	Coaxial Ag–base metal nanowire networks with high electrochemical stability for transparent and stretchable asymmetric supercapacitors. Nanoscale Horizons, 2017, 2, 199-204.	8.0	63
35	Topotactic Phase Transformation of Hexagonal MoO ₃ to Layered MoO ₃ -II and Its Two-Dimensional (2D) Nanosheets. Chemistry of Materials, 2014, 26, 5533-5539.	6.7	55
36	Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors. NPG Asia Materials, 2018, 10, 406-416.	7.9	55

JIANGXIN WANG

#	Article	IF	CITATIONS
37	Solution-assembled nanowires for high performance flexible and transparent solar-blind photodetectors. Journal of Materials Chemistry C, 2015, 3, 596-600.	5.5	45
38	A Nonpresodiate Sodiumâ€lon Capacitor with High Performance. Small, 2018, 14, e1804035.	10.0	36
39	Progress and Prospects in Stretchable Electroluminescent Devices. Nanophotonics, 2017, 6, 435-451.	6.0	35
40	A Tailorable Sprayâ€Assembly Strategy of Silver Nanowiresâ€Bundle Mesh for Transferable Highâ€Performance Transparent Conductor. Advanced Functional Materials, 2021, 31, .	14.9	32
41	Anisotropic conductive networks for multidimensional sensing. Materials Horizons, 2021, 8, 2615-2653.	12.2	30
42	<i>Diphylleia grayi</i> -Inspired Stretchable Hydrochromics with Large Optical Modulation in the Visible–Near-Infrared Region. ACS Applied Materials & Interfaces, 2018, 10, 37685-37693.	8.0	29
43	Stretchable and Wearable Resistive Switching Randomâ€Access Memory. Advanced Intelligent Systems, 2020, 2, 2000007.	6.1	24
44	A semitransparent snake-like tactile and olfactory bionic sensor with reversibly stretchable properties. NPG Asia Materials, 2017, 9, e437-e437.	7.9	22
45	Reconfigurable and programmable origami dielectric elastomer actuators with 3D shape morphing and emissive architectures. NPG Asia Materials, 2019, 11, .	7.9	21
46	Ultra-high temperature tolerant flexible transparent electrode with embedded silver nanowires bundle micromesh for electrical heater. Npj Flexible Electronics, 2022, 6, .	10.7	21
47	Zn2GeO4 Nanowires As Efficient Electron Injection Material for Electroluminescent Devices. ACS Applied Materials & Interfaces, 2013, 5, 6793-6796.	8.0	17
48	Graphene: Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors (Adv. Mater. 13/2014). Advanced Materials, 2014, 26, 1950-1950.	21.0	17
49	Inkjetâ€Printed Iontronics for Transparent, Elastic, and Strainâ€Insensitive Touch Sensing Matrix. Advanced Intelligent Systems, 2020, 2, 2000088.	6.1	15
50	Synthesis, Characterization, and Memory Performance of Two Phenazine/Triphenylamineâ€Based Organic Small Molecules through Donorâ€Acceptor Design. Asian Journal of Organic Chemistry, 2015, 4, 646-651.	2.7	13
51	Strain Sensors: Extremely Stretchable Strain Sensors Based on Conductive Selfâ€Healing Dynamic Crossâ€Links Hydrogels for Humanâ€Motion Detection (Adv. Sci. 2/2017). Advanced Science, 2017, 4, .	11.2	4
52	Electroluminescent Devices: Highly Stretchable and Selfâ€Deformable Alternating Current Electroluminescent Devices (Adv. Mater. 18/2015). Advanced Materials, 2015, 27, 2947-2947.	21.0	3
53	Supercapacitors: Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors (Adv. Energy Mater. 4/2016). Advanced Energy Materials, 2016, 6, n/a-n/a.	19.5	2
54	Capacitors: A Highâ€Performance Lithiumâ€Ion Capacitor Based on 2D Nanosheet Materials (Small 6/2017). Small, 2017, 13, .	10.0	2

#	Article	IF	CITATIONS
55	Artificial Muscles: Recent Progress in Artificial Muscles for Interactive Soft Robotics (Adv. Mater.) Tj ETQq1 1 0.78	4314 rgBT	2 /Overlock
56	Electroluminescent Devices: Extremely Stretchable Electroluminescent Devices with Ionic Conductors (Adv. Mater. 22/2016). Advanced Materials, 2016, 28, 4489-4489.	21.0	1
57	Nanowire Photodetectors: An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure (Adv. Mater. 6/2014). Advanced Materials, 2014, 26, 979-979.	21.0	Ο