Alessandro Pegoretti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2223075/publications.pdf

Version: 2024-02-01

304 papers 9,569 citations

47006 47 h-index 69250 77 g-index

309 all docs 309 docs citations

309 times ranked 8156 citing authors

#	Article	IF	CITATIONS
1	Multifunctional polyurethane foams with thermal energy storage/release capability. Journal of Thermal Analysis and Calorimetry, 2022, 147, 297-313.	3.6	7
2	Thermochemical heat storage performances of magnesium sulphate confined in polymer-derived SiOC aerogels. Journal of Alloys and Compounds, 2022, 895, 162592.	5 . 5	10
3	Statistical Modeling and Optimization of the Drawing Process of Bioderived Polylactide/Poly(dodecylene furanoate) Wet-Spun Fibers. Polymers, 2022, 14, 396.	4.5	9
4	Additive manufacturing with biodegradable polymers. , 2022, , 611-679.		2
5	Effective recycling of endâ€ofâ€ife polyvinyl chloride foams in ethylene–propylene diene monomers rubber. Journal of Vinyl and Additive Technology, 2022, 28, 494-501.	3.4	7
6	Bioadhesive patches based on carboxymethyl cellulose/polyvinylpyrrolidone/bentonite composites and Soluplus® for skin administration of poorly soluble molecules. Applied Clay Science, 2022, 216, 106377.	5 . 2	7
7	Bio-composites for fused filament fabrication: effects of maleic anhydride grafting on poly(lactic) Tj ETQq1 1 0.78	4314 rgBT 4.8	Overlock
8	Improving the Thermomechanical Properties of Poly(lactic acid) via Reduced Graphene Oxide and Bioderived Poly(decamethylene 2,5-furandicarboxylate). Materials, 2022, 15, 1316.	2.9	8
9	Salt leaching as a green method for the production of polyethylene foams for thermal energy storage applications. Polymer Engineering and Science, 2022, 62, 1650-1663.	3.1	3
10	3D printing of ABS Nanocomposites. Comparison of processing and effects of multi-wall and single-wall carbon nanotubes on thermal, mechanical and electrical properties. Journal of Materials Science and Technology, 2022, 121, 52-66.	10.7	31
11	Production and characterization of novel EPDM/NBR panels with paraffin for potential thermal energy storage applications. Thermal Science and Engineering Progress, 2022, 32, 101309.	2.7	8
12	Thermomechanical evaluation of expanded ethyleneâ€propylene diene monomers rubber mixed with recycled polyvinyl chloride foams. Cleaner Materials, 2022, 4, 100091.	5.1	0
13	Three Dimensional Printing of Multiscale Carbon Fiber-Reinforced Polymer Composites Containing Graphene or Carbon Nanotubes. Nanomaterials, 2022, 12, 2064.	4.1	2
14	Improving the Wet-Spinning and Drawing Processes of Poly(lactide)/Poly(ethylene furanoate) and Polylactide/Poly(dodecamethylene furanoate) Fiber Blends. Polymers, 2022, 14, 2910.	4.5	6
15	Si3N4 nanofelts/paraffin composites as novel thermal energy storage architecture. Journal of Materials Science, 2021, 56, 1537-1550.	3.7	14
16	Optimization of the thermal mending process in epoxy/cyclic olefin copolymer blends. Journal of Applied Polymer Science, 2021, 138, 49937.	2.6	8
17	Evaluation of the role of devulcanized rubber on the thermomechanical properties of expanded ethyleneâ€propylene diene monomers composites. Polymer Engineering and Science, 2021, 61, 767-779.	3.1	11
18	Poly(vinylidene fluoride)/thermoplastic polyurethane flexible and <scp>3D</scp> printable conductive composites. Journal of Applied Polymer Science, 2021, 138, 50305.	2.6	15

#	Article	IF	CITATIONS
19	Evaluation of the salt leaching method for the production of ethylene propylene diene monomer rubber foams. Polymer Engineering and Science, 2021, 61, 136-153.	3.1	11
20	Lowâ€eycle fatigue behavior of flexible <scp>3D</scp> printed thermoplastic polyurethane blends for thermal energy storage/release applications. Journal of Applied Polymer Science, 2021, 138, 49704.	2.6	16
21	Investigation of the Effects of Multi-Wall and Single-Wall Carbon Nanotubes Concentration on the Properties of ABS Nanocomposites. Journal of Carbon Research, 2021, 7, 33.	2.7	11
22	Towards sustainable structural composites: A review on the recycling of continuous-fiber-reinforced thermoplastics. Advanced Industrial and Engineering Polymer Research, 2021, 4, 105-115.	4.7	24
23	NOVEL EPDM/PARAFFIN FOAMS FOR THERMAL ENERGY STORAGE APPLICATIONS. Rubber Chemistry and Technology, 2021, 94, 432-448.	1.2	10
24	Production and Characterization of TES-EPDM Foams With Paraffin for Thermal Management Applications. Frontiers in Materials, 2021, 8, .	2.4	12
25	High-Performance Polyamide/Carbon Fiber Composites for Fused Filament Fabrication: Mechanical and Functional Performances. Journal of Materials Engineering and Performance, 2021, 30, 5066-5085.	2.5	35
26	Graphene Deposition on Glass Fibers by Triboelectrification. Applied Sciences (Switzerland), 2021, 11, 3123.	2.5	4
27	Recycling concepts for short-fiber-reinforced and particle-filled thermoplastic composites: A review. Advanced Industrial and Engineering Polymer Research, 2021, 4, 93-104.	4.7	11
28	Multifunctionality of Reduced Graphene Oxide in Bioderived Polylactide/Poly(Dodecylene Furanoate) Nanocomposite Films. Molecules, 2021, 26, 2938.	3.8	16
29	Thermophysical Properties of Multifunctional Syntactic Foams Containing Phase Change Microcapsules for Thermal Energy Storage. Polymers, 2021, 13, 1790.	4.5	10
30	Effect of printing parameters on the electromagnetic shielding efficiency of ABS/carbonaceous-filler composites manufactured via filament fused fabrication. Journal of Manufacturing Processes, 2021, 65, 12-19.	5.9	16
31	Mechanical Behaviour of Multifunctional Epoxy/Hollow Glass Microspheres/Paraffin Microcapsules Syntactic Foams for Thermal Management. Polymers, 2021, 13, 2896.	4.5	5
32	Effect of Hydrothermal Treatment and Doping on the Microstructural Features of Sol-Gel Derived BaTiO3 Nanoparticles. Materials, 2021, 14, 4345.	2.9	9
33	Thermal Mending of Electroactive Carbon/Epoxy Laminates Using a Porous Poly(Îμ-caprolactone) Electrospun Mesh. Polymers, 2021, 13, 2723.	4.5	6
34	Evaluating the Multifunctional Performance of Structural Composites for Thermal Energy Storage. Polymers, 2021, 13, 3108.	4.5	8
35	Polymer-derived silicon nitride aerogels as shape stabilizers for low and high-temperature thermal energy storage. Journal of the European Ceramic Society, 2021, 41, 5484-5494.	5.7	21
36	Electrospun Shape-Stabilized Phase Change Materials Based on Photo-Crosslinked Polyethylene Oxide. Polymers, 2021, 13, 2979.	4.5	6

#	Article	IF	CITATIONS
37	Biogenic architectures for green, cheap, and efficient thermal energy storage and management. Renewable Energy, 2021, 178, 96-107.	8.9	7
38	Fabrication and characterization of piezoresistive flexible pressure sensors based on poly(vinylidene) Tj ETQq0 0 0 42, 6621-6634.	rgBT /Ove 4.6	erlock 10 Tf 11
39	A genipin crosslinked silk fibroin monolith by compression molding with recovering mechanical properties in physiological conditions. Cell Reports Physical Science, 2021, 2, 100605.	5.6	13
40	Dynamic-mechanical response of carbon fiber laminates with a reactive thermoplastic resin containing phase change microcapsules. Mechanics of Time-Dependent Materials, 2020, 24, 395-418.	4.4	20
41	Molecular transport through 3-hydroxybutyrate co-3-hydroxyhexanoate biopolymer films with dispersed graphene oxide nanoparticles: Gas barrier, structural and mechanical properties. Polymer Testing, 2020, 81, 106181.	4.8	23
42	All-carbon multi-scale and hierarchical fibers and related structural composites: A review. Composites Science and Technology, 2020, 186, 107932.	7.8	92
43	Interfaces in biopolymer nanocomposites: Their role in the gas barrier properties and kinetics of residual solvent desorption. Applied Surface Science, 2020, 507, 145066.	6.1	9
44	Chloroform desorption from poly(lactic acid) nanocomposites: a thermal desorption spectroscopy study. Pure and Applied Chemistry, 2020, 92, 391-398.	1.9	7
45	Role of Surface-Treated Silica Nanoparticles on the Thermo-Mechanical Behavior of Poly(Lactide). Applied Sciences (Switzerland), 2020, 10, 6731.	2.5	15
46	Effect of phase change microcapsules on the thermo-mechanical, fracture and heat storage properties of unidirectional carbon/epoxy laminates. Polymer Testing, 2020, 91, 106747.	4.8	18
47	Polydopamine-Coated Paraffin Microcapsules as a Multifunctional Filler Enhancing Thermal and Mechanical Performance of a Flexible Epoxy Resin. Journal of Composites Science, 2020, 4, 174.	3.0	11
48	Cyclic Olefin Copolymer Interleaves for Thermally Mendable Carbon/Epoxy Laminates. Molecules, 2020, 25, 5347.	3.8	10
49	Editorial: Biodegradable Matrices and Composites. Frontiers in Materials, 2020, 7, .	2.4	2
50	Smart Manufacturing Process of Carbon-Based Low-Dimensional Structures and Fiber-Reinforced Polymer Composites for Engineering Applications. Journal of Materials Engineering and Performance, 2020, 29, 4162-4186.	2.5	14
51	Mechanical and Functional Properties of Novel Biobased Poly(decylene-2,5-furanoate)/Carbon Nanotubes Nanocomposite Films. Polymers, 2020, 12, 2459.	4.5	14
52	Effect of the Temperature and of the Drawing Conditions on the Fracture Behaviour of Thermoplastic Starch Films for Packaging Applications. Journal of Polymers and the Environment, 2020, 28, 3244-3255.	5.0	18
53	Healable Carbon Fiber-Reinforced Epoxy/Cyclic Olefin Copolymer Composites. Materials, 2020, 13, 2165.	2.9	10
54	Hybrid Composites Based on Thermoplastic Polyurethane With a Mixture of Carbon Nanotubes and Carbon Black Modified With Polypyrrole for Electromagnetic Shielding. Frontiers in Materials, 2020, 7, .	2.4	30

#	Article	IF	CITATIONS
55	Detailed experimental and theoretical investigation of the thermomechanical properties of epoxy composites containing paraffin microcapsules for thermal management. Polymer Engineering and Science, 2020, 60, 1202-1220.	3.1	26
56	Thermo-Mechanical Behavior and Hydrolytic Degradation of Linear Low Density Polyethylene/Poly(3-hydroxybutyrate) Blends. Frontiers in Materials, 2020, 7, .	2.4	5
57	Development of new nanocomposites for 3D printing applications. , 2020, , 17-59.		5
58	Interface nanocavities in poly (lactic acid) membranes with dispersed cellulose nanofibrils: Their role in the gas barrier performances. Polymer, 2020, 202, 122729.	3.8	7
59	Thermal mending in novel epoxy/cyclic olefin copolymer blends. EXPRESS Polymer Letters, 2020, 14, 368-383.	2.1	17
60	Novel Poly(Caprolactone)/Epoxy Blends by Additive Manufacturing. Materials, 2020, 13, 819.	2.9	12
61	Graphene/Carbon Nanotube Hybrid Nanocomposites: Effect of Compression Molding and Fused Filament Fabrication on Properties. Polymers, 2020, 12, 101.	4.5	45
62	Fused Filament Fabrication of Piezoresistive Carbon Nanotubes Nanocomposites for Strain Monitoring. Frontiers in Materials, 2020, 7, .	2.4	22
63	Evaluation of the Role of Devulcanized Rubber on the Thermo-mechanical Properties of Polystyrene. Journal of Polymers and the Environment, 2020, 28, 1737-1748.	5.0	13
64	Multifunctional structural composites for thermal energy storage. Multifunctional Materials, 2020, 3, 042001.	3.7	14
65	Determination of the Fracture Resistance of Ductile Polymers: The ESIS TC4 Recent Experience. Materials Performance and Characterization, 2020, 9, 675-687.	0.3	4
66	Effect of expandable and expanded graphites on the thermo-mechanical properties of polyamide 11. Journal of Elastomers and Plastics, 2019, 51, 175-190.	1.5	7
67	Novel electroactive polyamide 12 based nanocomposites filled with reduced graphene oxide. Polymer Engineering and Science, 2019, 59, 198-205.	3.1	15
68	Thermal management with polymer composites. EXPRESS Polymer Letters, 2019, 13, 844-844.	2.1	2
69	Polylactic acid-lauryl functionalized nanocellulose nanocomposites: Microstructural, thermo-mechanical and gas transport properties. EXPRESS Polymer Letters, 2019, 13, 858-876.	2.1	29
70	Application of the thermal energy storage concept to novel epoxy–short carbon fiber composites. Journal of Applied Polymer Science, 2019, 136, 47434.	2.6	30
71	Rapid Prototyping of Efficient Electromagnetic Interference Shielding Polymer Composites via Fused Deposition Modeling. Applied Sciences (Switzerland), 2019, 9, 37.	2.5	35
72	Thermo-electrical behaviour of cyclic olefin copolymer/exfoliated graphite nanoplatelets nanocomposites foamed through supercritical carbon dioxide. Journal of Cellular Plastics, 2019, 55, 263-282.	2.4	13

#	Article	IF	CITATIONS
73	Lifetime assessment of high-density polyethylene–silica nanocomposites. Nanomaterials and Nanotechnology, 2019, 9, 184798041984998.	3.0	5
74	Thermo-Mechanical Behavior of Novel Wood Laminae-Thermoplastic Starch Biodegradable Composites With Thermal Energy Storage/Release Capability. Frontiers in Materials, 2019, 6, .	2.4	29
75	Adiabatic effects on the temperature and rate dependency of the fracture toughness of an ethylene-fluoroethylene film. Engineering Fracture Mechanics, 2019, 214, 260-269.	4.3	2
76	Docosane-Organosilica Microcapsules for Structural Composites with Thermal Energy Storage/Release Capability. Materials, 2019, 12, 1286.	2.9	45
77	Polyhydroxyalkanoates/Fibrillated Nanocellulose Composites for Additive Manufacturing. Journal of Polymers and the Environment, 2019, 27, 1333-1341.	5.0	65
78	Temperature Dependent Strain/Damage Monitoring of Glass/Epoxy Composites with Graphene as a Piezoresistive Interphase. Fibers, 2019, 7, 17.	4.0	15
79	Novel reactive thermoplastic resin as a matrix for laminates containing phase change microcapsules. Polymer Composites, 2019, 40, 3711-3724.	4.6	42
80	Structure and Properties of Polyamide 11 Nanocomposites Filled with Fibrous Palygorskite Clay. Journal of Renewable Materials, 2019, 7, 89-102.	2.2	9
81	Synergistic effects of metal hydroxides and fumed nanosilica as fire retardants for polyethylene. Flame Retardancy and Thermal Stability of Materials, 2019, 2, 30-48.	1.1	4
82	Shape memory epoxy nanocomposites with carbonaceous fillers and inâ€situ generated silver nanoparticles. Polymer Engineering and Science, 2019, 59, 694-703.	3.1	14
83	Discontinuous carbon fiber/polyamide composites with microencapsulated paraffin for thermal energy storage. Journal of Applied Polymer Science, 2019, 136, 47408.	2.6	29
84	Polyethylene-based single polymer laminates: Synergistic effects of nanosilica and metal hydroxides. Journal of Reinforced Plastics and Composites, 2019, 38, 62-73.	3.1	9
85	Electromagnetic interference shielding effectiveness of composites based on polyurethane derived from castor oil and nanostructured carbon fillers. Polymer Composites, 2019, 40, E78.	4.6	15
86	Effect of graphene nanoplatelets structure on the properties of acrylonitrile–butadiene–styrene composites. Polymer Composites, 2019, 40, E285.	4.6	24
87	Evaluation of the role of carbon nanotubes on the electrical properties of poly(butylene) Tj ETQq1 1 0.784314 rg 51, 3-25.	gBT /Overlo 1.5	ock 10 Tf 50 5
88	Thermoâ€mechanical and adhesive properties of polymeric films based on ZnAlâ€hydrotalcite composites for active wound dressings. Polymer Engineering and Science, 2019, 59, E112.	3.1	7
89	Magnetostrictive polymer composites: Recent advances in materials, structures and properties. Progress in Materials Science, 2018, 97, 204-229.	32.8	101
90	Electromagnetic interference shielding effectiveness of ABS carbon-based composites manufactured via fused deposition modelling. Materials Today Communications, 2018, 15, 70-80.	1.9	90

#	Article	IF	Citations
91	Hybrid composites of <scp>ABS</scp> with carbonaceous fillers for electromagnetic shielding applications. Journal of Applied Polymer Science, 2018, 135, 46546.	2.6	27
92	Nanoscale friction of graphene oxide over glass-fibre and polystyrene. Composites Part B: Engineering, 2018, 148, 272-280.	12.0	18
93	Multifunctional epoxy/carbon fiber laminates for thermal energy storage and release. Composites Science and Technology, 2018, 158, 101-111.	7.8	75
94	Electromagnetic interference shielding effectiveness and microwave absorption properties of thermoplastic polyurethane/montmorilloniteâ€polypyrrole nanocomposites. Polymers for Advanced Technologies, 2018, 29, 1377-1384.	3.2	42
95	Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers. Composites Part A: Applied Science and Manufacturing, 2018, 107, 112-123.	7.6	105
96	Polyvinyl alcohol reinforced with carbon nanotubes for fused deposition modeling. Journal of Reinforced Plastics and Composites, 2018, 37, 716-727.	3.1	20
97	Polyvinyl alcohol reinforced with crystalline nanocellulose for 3D printing application. Materials Today Communications, 2018, 15, 236-244.	1.9	52
98	3D printable thermoplastic polyurethane blends with thermal energy storage/release capabilities. Materials Today Communications, 2018, 15, 228-235.	1.9	50
99	Ultrathin wood laminaeâ€"polyvinyl alcohol biodegradable composites. Polymer Composites, 2018, 39, 1116-1124.	4.6	6
100	Effect of carbonization and multiâ€walled carbon nanotubes on polyacrylonitrile short carbon fiber ― epoxy composites. Polymer Composites, 2018, 39, E817.	4.6	8
101	Synergistic effects of carbon black and carbon nanotubes on the electrical resistivity of poly(butyleneâ€terephthalate) nanocomposites. Advances in Polymer Technology, 2018, 37, 1744-1754.	1.7	25
102	Evaluation of the shape memory behavior of a poly(cyclooctene) based nanocomposite device. Polymer Engineering and Science, 2018, 58, 430-437.	3.1	8
103	Experimental analysis and theoretical modeling of the mechanical behavior of starchâ€graftedâ€polypropylene/kenaf fibers composites. Polymer Composites, 2018, 39, 3289-3299.	4.6	9
104	Unveiling the hybrid interface in polymer nanocomposites enclosing silsesquioxanes with tunable molecular structure: Spectroscopic, thermal and mechanical properties. Journal of Colloid and Interface Science, 2018, 512, 609-617.	9.4	20
105	Non-isothermal crystallization kinetics of polypropylene/short glass fibre/multiwalled carbon nanotube composites. RSC Advances, 2018, 8, 39127-39139.	3.6	27
106	Interleaving in structural composites: Adapting an old concept to new challenges. EXPRESS Polymer Letters, 2018, 12, 1025-1025.	2.1	3
107	Effects of the Nanofillers on Physical Properties of Acrylonitrile-Butadiene-Styrene Nanocomposites: Comparison of Graphene Nanoplatelets and Multiwall Carbon Nanotubes. Nanomaterials, 2018, 8, 674.	4.1	64
108	Liquid crystalline organic fibers and their mechanical behavior. , 2018, , 621-697.		6

#	Article	IF	Citations
109	Multifunctional glass fiber/polyamide composites with thermal energy storage/release capability. EXPRESS Polymer Letters, 2018, 12, 349-364.	2.1	48
110	Thermoplastic Polyurethane Blends With Thermal Energy Storage/Release Capability. Frontiers in Materials, 2018, 5, .	2.4	17
111	Structural Health Monitoring: Current State and Future Trends. , 2018, , .		4
112	Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites. Nanomaterials, 2018, 8, 49.	4.1	104
113	Tailoring the Dielectric and Mechanical Properties of Polybutadiene Nanocomposites by Using Designed Ladder-like Polysilsesquioxanes. ACS Applied Nano Materials, 2018, 1, 3817-3828.	5.0	15
114	Combined effect of fumed silica and metal hydroxides as fire retardants in PE single-polymer composites. AIP Conference Proceedings, 2018, , .	0.4	1
115	Novel phase change materials using thermoplastic composites. AIP Conference Proceedings, 2018, , .	0.4	6
116	Electrically conductive composites of polyurethane derived from castor oil with polypyrroleâ€coated peach palm fibers. Polymer Composites, 2017, 38, 2146-2155.	4.6	22
117	Electrically conductive nanocomposites for fused deposition modelling. Synthetic Metals, 2017, 226, 7-14.	3.9	139
118	Photocurable resin/nanocellulose composite coatings for wood protection. Progress in Organic Coatings, 2017, 106, 128-136.	3.9	60
119	Novel polyamide 12 based nanocomposites for industrial applications. Journal of Polymer Research, 2017, 24, 1.	2.4	14
120	Effects of carbonaceous nanofillers on the mechanical and electrical properties of crosslinked poly(cyclooctene). Polymer Engineering and Science, 2017, 57, 537-543.	3.1	13
121	Relaxation processes in side-chain polyazomethine/thermally reduced graphene oxide nanocomposites. European Polymer Journal, 2017, 96, 119-133.	5.4	11
122	Effects of Fumed Silica and Draw Ratio on Nanocomposite Polypropylene Fibers. Polymers, 2017, 9, 41.	4.5	21
123	Wax Confinement with Carbon Nanotubes for Phase Changing Epoxy Blends. Polymers, 2017, 9, 405.	4.5	58
124	Fatigue behaviour of biocomposites. , 2017, , 431-478.		2
125	Ultrathin Wood Laminae–Thermoplastic Starch Biodegradable Composites. Journal of Renewable Materials, 2017, , .	2.2	2
126	Tuning Electrical and Thermal Properties in Epoxy/Glass Composites by Graphene-Based Interphase. Journal of Composites Science, 2017, 1, 12.	3.0	5

#	Article	IF	CITATIONS
127	Expressing polymers for a sustainable development. EXPRESS Polymer Letters, 2017, 11, 852-852.	2.1	1
128	POLYETHYLENE WAX/EPDM BLENDS AS SHAPE-STABILIZED PHASE CHANGE MATERIALS FOR THERMAL ENERGY STORAGE. Rubber Chemistry and Technology, 2017, 90, 575-584.	1.2	30
129	Phase changing nanocomposites for low temperature thermal energy storage and release. EXPRESS Polymer Letters, 2017, 11, 738-752.	2.1	37
130	Surface free energy and mechanical performance of LDPE/CBF composites containing toxic-metal free filler. International Journal of Adhesion and Adhesives, 2017, 77, 58-62.	2.9	5
131	Study on the surface properties of colored talc filler (CTF) and mechanical performance of CTF/acrylonitrile-butadiene-styrene composite. Journal of Alloys and Compounds, 2016, 676, 513-520.	5.5	8
132	Photocurable resin/microcrystalline cellulose composites for wood protection: Physical-mechanical characterization. Progress in Organic Coatings, 2016, 99, 230-239.	3.9	18
133	Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with Au- and Cu-doped graphene oxide hybrid nanofiller. Synthetic Metals, 2016, 220, 653-660.	3.9	52
134	Improving fiber/matrix interfacial strength through graphene and graphene-oxide nano platelets. IOP Conference Series: Materials Science and Engineering, 2016, 139, 012004.	0.6	17
135	Thermal and mechanical behavior of innovative melt-blown fabrics based on polyamide nanocomposites. Journal of Industrial Textiles, 2016, 45, 1504-1515.	2.4	9
136	Morphology and viscoelastic properties of meltâ€spun HDPE/hydrotalcite nanocomposite fibers. Polymer Composites, 2016, 37, 288-298.	4.6	7
137	Interfacial interactions in silicaâ€reinforced polypropylene nanocomposites and their impact on the mechanical properties. Polymer Composites, 2016, 37, 2018-2026.	4.6	12
138	Electrospinning of doped and undoped-polyaniline/poly(vinylidene fluoride) blends. Synthetic Metals, 2016, 213, 34-41.	3.9	38
139	Fused deposition modelling with ABS–graphene nanocomposites. Composites Part A: Applied Science and Manufacturing, 2016, 85, 181-191.	7.6	387
140	Enhancement of interfacial adhesion in glass fiber/epoxy composites by electrophoretic deposition of graphene oxide on glass fibers. Composites Science and Technology, 2016, 126, 149-157.	7.8	96
141	Cyclic olefin copolymer–silica nanocomposites foams. Journal of Materials Science, 2016, 51, 3907-3916.	3.7	14
142	Mechanical behaviour of cyclic olefin copolymer/exfoliated graphite nanoplatelets nanocomposites foamed through supercritical carbon dioxide. EXPRESS Polymer Letters, 2016, 10, 977-989.	2.1	16
143	Synergistic effect of graphite nanoplatelets and glass fibers in polypropylene composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	14
144	Toughening linear low-density polyethylene with halloysite nanotubes. Polymer Composites, 2015, 36, 869-883.	4.6	34

#	Article	IF	CITATIONS
145	Mechanical and thermal properties of poly(butylene) Tj ETQq1 10.784314 rgBT /Overlock 10 Tf 50 747 Td (succi Polymer Science, $2015,132,$.	nate)/poly 2.6	(3â€hydrox 29
146	Liquid crystalline polymer nanocomposites reinforced with in-situ reduced graphene oxide. EXPRESS Polymer Letters, 2015, 9, 709-720.	2.1	22
147	A comparison between micro- and nanocellulose-filled composite adhesives for oil paintings restoration. Nanocomposites, 2015, 1, 195-203.	4.2	29
148	Where micro- and nano-worlds meet: multiscale polymer composites. EXPRESS Polymer Letters, 2015, 9, 329-329.	2.1	3
149	Spinning, drawing and physical properties of polypropylene nanocomposite fibers with fumed nanosilica. EXPRESS Polymer Letters, 2015, 9, 277-290.	2.1	37
150	Application of the load separation criterion in J-testing of ductile polymers: A round-robin testing exercise. Polymer Testing, 2015, 44, 72-81.	4.8	15
151	Recent advances in fiber/matrix interphase engineering for polymer composites. Progress in Materials Science, 2015, 73, 1-43.	32.8	440
152	Innovative microcrystalline cellulose composites as lining adhesives for canvas. Polymer Engineering and Science, 2015, 55, 1349-1354.	3.1	7
153	Microcrystalline cellulose filled composites for wooden artwork consolidation: Application and physic-mechanical characterization. Materials and Design, 2015, 83, 611-619.	7.0	15
154	Poly 2-ethyl-2-oxazoline/microcrystalline cellulose composites for cultural heritage conservation: Mechanical characterization in dry and wet state and application as lining adhesives of canvas. International Journal of Adhesion and Adhesives, 2015, 62, 92-100.	2.9	12
155	Starch-grafted-polypropylene/kenaf fibres composites. Part 2: thermal stability and dynamic-mechanical response. Journal of Reinforced Plastics and Composites, 2015, 34, 2045-2058.	3.1	9
156	Understanding the effect of silica nanoparticles and exfoliated graphite nanoplatelets on the crystallization behavior of isotactic polypropylene. Polymer Engineering and Science, 2015, 55, 672-680.	3.1	18
157	Interphase engineering in polymer composites: Challenging the devil…. EXPRESS Polymer Letters, 2015, 9, 838-838.	2.1	13
158	Novel electrically conductive polyurethane/montmorillonite-polypyrrole nanocomposites. EXPRESS Polymer Letters, 2015, 9, 945-958.	2.1	19
159	Effect of the water sorption on the mechanical response of microcrystalline celluloseâ€based composites for art protection and restoration. Journal of Applied Polymer Science, 2014, 131, .	2.6	13
160	Mechanical and rheological response of polypropylene/boehmite nanocomposites. Journal of Reinforced Plastics and Composites, 2014, 33, 252-265.	3.1	14
161	Starch-grafted-polypropylene/kenaf fibres composites. Part 1: Mechanical performances and viscoelastic behaviour. Composites Part A: Applied Science and Manufacturing, 2014, 56, 328-335.	7.6	35
162	Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. Journal of Materials Science, 2014, 49, 2035-2044.	3.7	29

#	Article	IF	Citations
163	Thermal, viscoelastic and mechanical behavior of polypropylene with synthetic boehmite alumina nanoparticles. Polymer Testing, 2014, 35, 92-100.	4.8	31
164	Reprocessing effects on polypropylene/silica nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	2.6	18
165	Electrically pressure sensitive poly(vinylidene fluoride)/polypyrrole electrospun mats. RSC Advances, 2014, 4, 15749-15758.	3.6	99
166	Flexural and impact behaviour of carbon/basalt fibers hybrid laminates. Journal of Composite Materials, 2014, 48, 1121-1130.	2.4	65
167	Advances in damage mechanics of polymer composites. Composites Part B: Engineering, 2014, 65, 1.	12.0	7
168	Hybridization of short glass fiber polypropylene composites with nanosilica and graphite nanoplatelets. Journal of Reinforced Plastics and Composites, 2014, 33, 1682-1695.	3.1	28
169	The effect of compressive stress on the electrically resistivity of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Ove	rlogk 10 Tí	^F 50 502 Td (
170	Polyaniline-coated coconut fibers: Structure, properties and their use as conductive additives in matrix of polyurethane derived from castor oil. Polymer Testing, 2014, 38, 18-25.	4.8	48
171	Expanded graphite nanoplatelets as coupling agents in glass fiber reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2014, 66, 25-34.	7.6	37
172	Long-term creep behavior of polypropylene/fumed silica nanocomposites estimated by time–temperature and time–strain superposition approaches. Polymer Bulletin, 2014, 71, 2247-2268.	3.3	18
173	Melt spinning and drawing of polyethylene nanocomposite fibers with organically modified hydrotalcite. Journal of Applied Polymer Science, 2014, 131, .	2.6	10
174	Synergistic effect of exfoliated graphite nanoplatelets and short glass fiber on the mechanical and interfacial properties of epoxy composites. Composites Science and Technology, 2014, 98, 15-21.	7.8	57
175	(Re)processing effects on linear low-density polyethylene/silica nanocomposites. Journal of Polymer Research, 2013, 20, 1.	2.4	18
176	Silica nanoparticles as coupling agents for polypropylene/glass composites. Composites Science and Technology, 2013, 76, 77-83.	7.8	51
177	On the toughness of thermoplastic polymer nanocomposites as assessed by the essential work of fracture (EWF) approach. Composite Interfaces, 2013, 20, 395-404.	2.3	21
178	Filler aggregation as a reinforcement mechanism in polymer nanocomposites. Mechanics of Materials, 2013, 61, 79-90.	3.2	119
179	Electrospinning of a blend of a liquid crystalline polymer with poly(ethylene oxide): Vectran nanofiber mats and their mechanical properties. Journal of Materials Chemistry C, 2013, 1, 351-358.	5.5	15
180	Polypropylene/date stone flour composites: Effects of filler contents and EBAGMA compatibilizer on morphology, thermal, and mechanical properties. Journal of Applied Polymer Science, 2013, 128, 4314-4321.	2.6	8

#	Article	IF	Citations
181	Improving fibre/matrix interface through nanoparticles. EXPRESS Polymer Letters, 2013, 7, 106-106.	2.1	3
182	Viscoelastic behaviour and fracture toughness of linear-low-density polyethylene reinforced with synthetic boehmite alumina nanoparticles. EXPRESS Polymer Letters, 2013, 7, 652-666.	2.1	25
183	Electrically conductive epoxy nanocomposites containing carbonaceous fillers and in-situ generated silver nanoparticles. EXPRESS Polymer Letters, 2013, 7, 673-682.	2.1	22
184	Organically modified hydrotalcite for compounding and spinning of polyethylene nanocomposites. EXPRESS Polymer Letters, 2013, 7, 936-949.	2.1	12
185	Liquid crystalline single-polymer short-fibers composites. Composite Interfaces, 2013, 20, 287-298.	2.3	12
186	Monitoring the Mechanical Behaviour of Electrically Conductive Polymer Nanocomposites Under Ramp and Creep Conditions. Journal of Nanoscience and Nanotechnology, 2012, 12, 4093-4102.	0.9	31
187	Effect of Silica Nanoparticles on the Mechanical Performances of Poly(Lactic Acid). Journal of Polymers and the Environment, 2012, 20, 713-725.	5.0	7 5
188	Thermal stability of high density polyethylene–fumed silica nanocomposites. Journal of Thermal Analysis and Calorimetry, 2012, 109, 863-873.	3.6	46
189	Effect of nanoclay addition on the fiber/matrix adhesion in epoxy/glass composites. Journal of Composite Materials, 2012, 46, 1439-1451.	2.4	71
190	Monitoring the mechanical behavior under ramp and creep conditions of electrically conductive polymer composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1285-1292.	7.6	36
191	Fatigue resistance of basalt fibers-reinforced laminates. Journal of Composite Materials, 2012, 46, 1773-1785.	2.4	97
192	Thermo-mechanical properties of high density polyethylene $\hat{a}\in$ fumed silica nanocomposites: effect of filler surface area and treatment. Journal of Polymer Research, 2012, 19, 1.	2.4	63
193	Development and thermoâ€mechanical behavior of nanocomposite epoxy adhesives. Polymers for Advanced Technologies, 2012, 23, 660-668.	3.2	28
194	In situ reduction of graphene oxide dispersed in a polymer matrix. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	29
195	Fracture behaviour of linear low density polyethylene – fumed silica nanocomposites. Engineering Fracture Mechanics, 2012, 79, 213-224.	4.3	58
196	E: Food Engineering & Dioxide Pasteurization on Natural Microbiota, Texture, and Microstructure of Freshâ€Cut Coconut. Journal of Food Science, 2012, 77, E137-43.	3.1	35
197	Biodegradable single-polymer composites from polyvinyl alcohol. Colloid and Polymer Science, 2012, 290, 359-370.	2.1	48
198	High performance polyethylene nanocomposite fibers. EXPRESS Polymer Letters, 2012, 6, 954-964.	2.1	35

#	Article	IF	CITATIONS
199	The role of alumina nanoparticles in epoxy adhesives. Journal of Nanoparticle Research, 2011, 13, 2429-2441.	1.9	68
200	Cycloolefin copolymer/fumed silica nanocomposites. Journal of Applied Polymer Science, 2011, 119, 3393-3402.	2.6	29
201	Thermal, thermoâ€mechanical, and dynamic mechanical properties of polypropylene/cycloolefin copolymer blends. Journal of Applied Polymer Science, 2011, 122, 3406-3414.	2.6	9
202	The effect of filler type and content and the manufacturing process on the performance of multifunctional carbon/poly-lactide composites. Carbon, 2011, 49, 4280-4290.	10.3	69
203	Thermo-mechanical characterization of epoxy/clay nanocomposites as matrices for carbon/nanoclay/epoxy laminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6324-6333.	5.6	48
204	Nanofiller Aggregation as Reinforcing Mechanism in Nanocomposites. Procedia Engineering, 2011, 10, 894-899.	1.2	21
205	Time and temperature effects on Poisson's ratio of poly(butylene terephthalate). EXPRESS Polymer Letters, 2011, 5, 685-697.	2.1	37
206	Linear low density polyethylene/cycloolefin copolymer blends. EXPRESS Polymer Letters, 2011, 5, 23-37.	2.1	41
207	Linear low-density polyethylene/silica micro- and nanocomposites: dynamic rheological measurements and modelling. EXPRESS Polymer Letters, 2010, 4, 115-129.	2.1	101
208	Annealing of drawn monofilaments of liquid crystalline polymer vectra/vapor grown carbon fiber nanocomposites. Polymer, 2010, 51, 1033-1041.	3.8	16
209	Tensile creep behaviour of polymethylpentene–silica nanocomposites. Polymer International, 2010, 59, 719-724.	3.1	43
210	Nonlinear tensile creep of linear low density polyethylene/fumed silica nanocomposites: Time-strain superposition and creep prediction. Polymer Composites, 2010, 31, 1947-1955.	4.6	43
211	Nanocomposite fibres: a strategy for stronger materials?. EXPRESS Polymer Letters, 2010, 4, 669-669.	2.1	2
212	Improving Epoxy Adhesives with Zirconia Nanoparticles. Composite Interfaces, 2010, 17, 873-892.	2.3	70
213	Fatigue behaviour of biocomposites. , 2010, , 465-505.		0
214	Liquid crystalline organic fibres and their mechanical behaviour., 2009,, 354-436.		8
215	Improving the creep stability of high-density polyethylene with acicular titania nanoparticles. Journal of Applied Polymer Science, 2009, 112, 1045-1055.	2.6	35
216	Physical properties of polyhedral oligomeric silsesquioxanes–cycloolefin copolymer nanocomposites. Journal of Applied Polymer Science, 2009, 114, 2270-2279.	2.6	35

#	Article	IF	CITATIONS
217	Characterization of drawn monofilaments of liquid crystalline polymer/carbon nanoparticle composites correlated to nematic order. Polymer, 2009, 50, 1797-1804.	3.8	18
218	On the essential work of fracture of linear low-density-polyethylene. I. Precision of the testing method. Engineering Fracture Mechanics, 2009, 76, 2788-2798.	4.3	28
219	Creep and Fatigue Behavior of Polymer Nanocomposites. , 2009, , 301-339.		12
220	Phase structure and tensile creep of recycled poly(ethylene terephthalate)/short glass fibers/impact modifier ternary composites. EXPRESS Polymer Letters, 2009, 3, 235-244.	2.1	15
221	The way to autonomic self-healing polymers and composites. EXPRESS Polymer Letters, 2009, 3, 62-62.	2.1	7
222	DSC analysis of post-yield deformed pbt. Effects of thermal history. Journal of Thermal Analysis and Calorimetry, 2008, 94, 825-833.	3.6	3
223	Highâ€density polyethylene reinforced with submicron titania particles. Polymer Engineering and Science, 2008, 48, 448-457.	3.1	45
224	Time, temperature, and strain effects on viscoelastic Poisson's ratio of epoxy resins. Polymer Engineering and Science, 2008, 48, 1434-1441.	3.1	49
225	Proposal of the Boltzmann-like superposition principle for nonlinear tensile creep of thermoplastics. Polymer Testing, 2008, 27, 596-606.	4.8	45
226	Experimental optimization of the impact energy absorption of epoxy–carbon laminates through controlled delamination. Composites Science and Technology, 2008, 68, 2653-2662.	7.8	41
227	Contact angle measurements as a tool to investigate the filler–matrix interactions in polyurethane–clay nanocomposites from blocked prepolymer. European Polymer Journal, 2008, 44, 1662-1672.	5.4	66
228	Chemical and mechanical treatments to improve the surface properties of shape memory NiTi wires. Surface and Coatings Technology, 2008, 202, 2214-2222.	4.8	37
229	Strengthening of polypropylene–glass fiber interface by direct metallocenic polymerization of propylene onto the fibers. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1915-1923.	7.6	33
230	Rheological Study on Polypropylene/Cycloolefin Copolymer Blends. Macromolecular Symposia, 2008, 263, 114-120.	0.7	7
231	Time–temperature dependence of the electrical resistivity of highâ€density polyethylene/carbon black composites. Journal of Applied Polymer Science, 2007, 106, 2065-2074.	2.6	27
232	Microstructure and nematic transition in thermotropic liquid crystalline fibers and their single polymer composites. Polymers for Advanced Technologies, 2007, 18, 771-779.	3.2	13
233	Tensile mechanical response of polyethylene – clay nanocomposites. EXPRESS Polymer Letters, 2007, 1, 123-131.	2.1	89
234	Trends in composite materials: the challenge of single-polymer composites. EXPRESS Polymer Letters, 2007, 1, 710-710.	2.1	28

#	Article	IF	Citations
235	High-density polyethylene/cycloolefin copolymer blends, part 2: Nonlinear tensile creep. Polymer Engineering and Science, 2006, 46, 1363-1373.	3.1	22
236	Preparation and tensile mechanical properties of unidirectional liquid crystalline single-polymer composites. Composites Science and Technology, 2006, 66, 1970-1979.	7.8	59
237	Flexural and interlaminar mechanical properties of unidirectional liquid crystalline single-polymer composites. Composites Science and Technology, 2006, 66, 1953-1962.	7.8	34
238	On the essential work of fracture of neat and rubber toughened polyamide-66. Engineering Fracture Mechanics, 2006, 73, 2486-2502.	4.3	24
239	Non-linear tensile creep of polypropylene: Time-strain superposition and creep prediction. Polymer, 2006, 47, 346-356.	3.8	7 5
240	Atomic force acoustic microscopy analysis of epoxy–silica nanocomposites. Polymer Testing, 2006, 25, 443-451.	4.8	36
241	Strain recovery of post-yield compressed semicrystalline poly(butylene terephthalate). Polymer, 2006, 47, 5862-5870.	3.8	6
242	Thermo-mechanical characterization of fumed silica-epoxy nanocomposites. Polymer, 2005, 46, 12065-12072.	3.8	217
243	Relaxation processes and fatigue behavior of crosslinked UHMWPE fiber compacts. Composites Science and Technology, 2005, 65, 87-94.	7.8	34
244	Indentation creep of heterogeneous blends of poly(ethylene terephthalate)/impact modifier. Polymer Testing, 2004, 23, 113-121.	4.8	12
245	Heterogeneous blends of recycled poly(ethylene terephthalate) with impact modifiers: phase structure and tensile creep. Polymer International, 2004, 53, 984-994.	3.1	7
246	Intraply and interply hybrid composites based on E-glass and poly(vinyl alcohol) woven fabrics: tensile and impact properties. Polymer International, 2004, 53, 1290-1297.	3.1	126
247	Effects of hygrothermal aging on the molar mass and thermal properties of recycled poly(ethylene) Tj ETQq1 1 0 233-243.	.784314 r _. 5.8	gBT /Overloc 50
248	Recycled poly(ethylene terephthalate)/layered silicate nanocomposites: morphology and tensile mechanical properties. Polymer, 2004, 45, 2751-2759.	3.8	137
249	Post-yield compressed semicrystalline poly(butylene terephthalate): energy storage and release. Polymer, 2004, 45, 3497-3504.	3.8	4
250	Recycled poly(ethylene terephthalate) and its short glass fibres composites: effects of hygrothermal aging on the thermo-mechanical behaviour. Polymer, 2004, 45, 7995-8004.	3.8	65
251	Novel uses of carbon composites for the fabrication of external fixators. Composites Science and Technology, 2004, 64, 873-883.	7.8	10
252	Non-Linear Long-Term Tensile Creep of Poly(propylene)/Cycloolefin Copolymer Blends with Fibrous Structure. Macromolecular Materials and Engineering, 2003, 288, 629-641.	3.6	34

#	Article	IF	Citations
253	Prediction of nonlinear long-term tensile creep of heterogeneous blends: Rubber-toughened polypropylene-poly(styrene-co-acrylonitrile). Journal of Applied Polymer Science, 2003, 88, 641-651.	2.6	28
254	Developments in dynamic testing of rubber compounds: assessment of non-linear effects. Polymer Testing, 2003, 22, 681-687.	4.8	50
255	Polypropylene/cycloolefin copolymer blends: effects of fibrous phase structure on tensile mechanical properties. Polymer, 2003, 44, 3381-3387.	3.8	27
256	Rate and Temperature Effects on the Plane Stress Essential Work of Fracture in Semicrystalline Pet. European Structural Integrity Society, 2003, , 89-100.	0.1	1
257	Fatigue characterization of polyethylene fiber reinforced polyolefin biomedical composites. Composites Part A: Applied Science and Manufacturing, 2002, 33, 453-458.	7.6	37
258	Crack growth in discontinuous glass fibre reinforced polypropylene under dynamic and static loading conditions. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1539-1547.	7.6	21
259	Effect of hydrothermal aging on the thermo-mechanical properties of a composite dental prosthetic material. Polymer Composites, 2002, 23, 342-351.	4.6	16
260	Prediction of the creep of heterogeneous polymer blends: Rubber-toughened polypropylene/poly(styrene-co-acrylonitrile). Polymer Engineering and Science, 2002, 42, 161-169.	3.1	27
261	Energy storage and strain-recovery processes in highly deformed semicrystalline poly(butylene) Tj ETQq $1\ 1\ 0.78^2$	1314 rgBT 2.1	/Overlock 10
262	Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials, 2002, 23, 2667-2682.	11.4	354
263	Hexakis (4-Oxazolinophenoxy) Cyclophosphazene as a Novel Compatibilizer for Polycarbonates and Polyamides. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 169, 263-266.	1.6	1
264	Thermooxidative stability of different polyurethanes evaluated by isothermal and dynamic methods. Journal of Applied Polymer Science, 2001, 81, 1216-1225.	2.6	16
265	Creep crack growth in a short glass fibres reinforced polypropylene composite. Journal of Materials Science, 2001, 36, 4637-4641.	3.7	19
266	Fatigue Fracture of Neat and Short Glass Fiber Reinforced Polypropylene: Effect of Frequency and Material Orientation. Journal of Composite Materials, 2000, 34, 1009-1027.	2.4	29
267	Ternary polymer blends: prediction of mechanical properties for various phase structures. Polymers for Advanced Technologies, 2000, 11, 75-81.	3.2	24
268	Investigation of nonelastic response of semicrystalline polymers at high strain levels. Journal of Applied Polymer Science, 2000, 78, 1664-1670.	2.6	16
269	Recovery of post-yielding deformations in semicrystalline poly(ethylene-terephthalate). Polymer, 2000, 41, 1857-1864.	3.8	29
270	Interfacial stress transfer in nylon-6/E-Glass microcomposites: Effect of temperature and strain rate. Polymer Composites, 2000, 21, 466-475.	4.6	26

#	Article	IF	CITATIONS
271	Prediction of the gas permeability of heterogeneous polymer blends. Polymer Engineering and Science, 2000, 40, 127-131.	3.1	35
272	Nonlinear dynamic behavior of rubber compounds: Construction of dynamic moduli generalized master curves. Polymer Engineering and Science, 2000, 40, 2227-2231.	3.1	7
273	Relaxation processes in polyethylene fibre-reinforced polyethylene composites. Composites Science and Technology, 2000, 60, 1181-1189.	7.8	82
274	Polypropylene/elastomer/poly(styrene-co-acrylonitrile) blends: Manifestation of the critical volume fraction of SAN in dynamic mechanical, tensile and impact properties. Journal of Polymer Research, 2000, 7, 7-14.	2.4	20
275	Blending, Grafting, and Cross-Linking Processes between Poly(ethylene oxide) and a (4-Benzoylphenoxy) $\hat{a}^1/40.5$ (Methoxyethoxyethoxy) $\hat{a}^1/40.5$ Phospha- zene Copolymer. Macromolecules, 2000, 33, 1173-1180.	4.8	22
276	Fatigue Fracture of Neat and Short Glass Fiber Reinforced Polypropylene: Effect of Frequency and Material Orientation. Journal of Composite Materials, 2000, 34, 1009-1027.	2.4	0
277	Fatigue crack propagation in polypropylene reinforced with short glass fibres. Composites Science and Technology, 1999, 59, 1055-1062.	7.8	52
278	Thermal Stabilities of Different Polyurethanes After Hydrolytic Treatment. Magyar Apróvad Közlemények, 1998, 52, 789-797.	1.4	13
279	Hydrolytic resistance of model poly(ether urethane ureas) and poly(ester urethane ureas). Journal of Applied Polymer Science, 1998, 70, 577-586.	2.6	28
280	Toughness of the fiber/matrix interface in nylon-6/glass fiber composites. Composites Part A: Applied Science and Manufacturing, 1998, 29, 283-291.	7.6	25
281	Measurement and analysis of stress transfer and toughness at a fiber–matrix interface. Composites Part A: Applied Science and Manufacturing, 1998, 29, 1063-1070.	7.6	7
282	Comparison of Two Accelerated Hot-Wet Aging Conditions of a Glass-Reinforced Epoxy Resin. , 1998, , 235-245.		1
283	Biodegradable fibres of poly(l-lactic acid) produced by melt spinning. Polymer, 1997, 38, 79-85.	3.8	251
284	Evaluation of the statistical parameters of a Weibull distribution. Journal of Materials Science, 1997, 32, 3711-3716.	3.7	57
285	Determination of the fracture toughness of thermoformed polypropylene cups by the essential work method. Polymer Engineering and Science, 1997, 37, 1045-1052.	3.1	22
286	In vitro degradation of poly(L-lactic acid) fibers produced by melt spinning. Journal of Applied Polymer Science, 1997, 64, 213-223.	2.6	42
287	In vitro degradation of poly(Lâ€lactic acid) fibers produced by melt spinning. Journal of Applied Polymer Science, 1997, 64, 213-223.	2.6	3
288	Thermomechanical behaviour of interfacial region in carbon fibre/epoxy composites. Composites Part A: Applied Science and Manufacturing, 1996, 27, 1067-1074.	7.6	42

#	Article	IF	CITATIONS
289	Experimental evaluation of residual stresses in single fibre composites by means of the fragmentation test. Journal of Materials Science, 1996, 31, 2385-2392.	3.7	20
290	Fracture toughness of the fibre-matrix interface in glass-epoxy composites. Journal of Materials Science, 1996, 31, 6145-6153.	3.7	40
291	Dynamic analysis of fibre breakage in single-and multiple-fibre composites. Journal of Materials Science, 1996, 31, 4181-4187.	3.7	19
292	Grafting reactions onto poly(organophosphazenes). IV. Light-induced graft copolymerization of organic polymers containing free acid or basic functionalities onto poly[bis(4-benzylphenoxy)phosphazene]. Journal of Applied Polymer Science, 1995, 56, 747-756.	2.6	13
293	Photochemical behavior of poly(organophosphazenes)â€"XIII. Sensitized photochemistry of poly[bis(4-benzylphenoxy)phosphazene] in solution and in film. European Polymer Journal, 1995, 31, 791-801.	5. 4	3
294	Effect of temperature and strain rate on interfacial shear stress transfer in carbon/epoxy model composites. Composites Science and Technology, 1995, 53, 39-46.	7.8	57
295	Determining the role of interfacial transcrystallinity in composite materials by dynamic mechanical thermal analysis. Composites, 1995, 26, 707-712.	0.7	69
296	Effect of hydrolysis on molar mass and thermal properties of poly (ester urethanes). Journal of Thermal Analysis, 1994, 41, 1441-1452.	0.6	14
297	Air-plasma treated polyethylene fibres: effect of time and temperature ageing on fibre surface properties and on fibre-matrix adhesion. Journal of Materials Science, 1994, 29, 3919-3925.	3.7	39
298	Biodegradable fibres. Journal of Materials Science: Materials in Medicine, 1994, 5, 679-683.	3.6	29
299	Hydrolytic stability and mechanical properties of poly(ester urethanes). Angewandte Makromolekulare Chemie, 1994, 220, 49-60.	0.2	13
300	Thermal and mechanical characterization of poly[bis(4-benzylphenoxy)phosphazene]. Polymer, 1994, 35, 4813-4818.	3.8	7
301	Vickers Crack Nucleation of Glass Sheets Coated by Thin Silica Gel Layers. Journal of the American Ceramic Society, 1989, 72, 2388-2390.	3.8	8
302	Mechanical, viscoelastic and sorption behaviour of acrylonitrile–butadiene–styrene composites with OD and 1D nanofillers. Polymer Bulletin, 0, , 1.	3.3	0
303	Thermal Energy Storage with Polymer Composites. , 0, , .		2
304	Tensile Creep Behaviour Of LLDPE-Fumed Silica Nanocomposites. , 0, , 183-192.		O