
Costas Biliaderis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2222914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydrate Polymers, 1995, 28, 33-48.	10.2	753
2	Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 2007, 79, 1033-1047.	5.2	734
3	Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. Journal of Cereal Science, 2007, 46, 101-118.	3.7	509
4	Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. Journal of Agricultural and Food Chemistry, 1986, 34, 6-14.	5.2	504
5	STARCH GELATINIZATION PHENOMENA STUDIED BY DIFFERENTIAL SCANNING CALORIMETRY. Journal of Food Science, 1980, 45, 1669-1674.	3.1	454
6	Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocolloids, 2011, 25, 1521-1529.	10.7	427
7	The structure and interactions of starch with food constituents. Canadian Journal of Physiology and Pharmacology, 1991, 69, 60-78.	1.4	333
8	Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydrate Polymers, 2007, 68, 146-158.	10.2	328
9	Thermal behavior of amylose-lipid complexes. Carbohydrate Polymers, 1985, 5, 367-389.	10.2	279
10	Crystallization behavior of amylose-V complexes: Structure-property relationships. Carbohydrate Research, 1989, 189, 31-48.	2.3	279
11	Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition. Carbohydrate Polymers, 2002, 48, 179-190.	10.2	269
12	Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Science, 2009, 82, 338-345.	5.5	263
13	Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: Part 1. Carbohydrate Polymers, 1998, 36, 89-104.	10.2	227
14	Glass transition and physical properties of polyol-plasticised pullulan–starch blends at low moisture. Carbohydrate Polymers, 1999, 40, 29-47.	10.2	217
15	Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloids, 2008, 22, 373-386.	10.7	217
16	Molecular size effects on rheological properties of oat β-glucans in solution and gels. Food Hydrocolloids, 2003, 17, 693-712.	10.7	215
17	Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture, 2001, 81, 988-1000.	3.5	209
18	A comparative study on structure–function relations of mixed-linkage (1→3), (1→4) linear β-d-glucans. Food	10.7	205

Hydrocolloids, 2004, 18, 837-855.

205

#	Article	IF	CITATIONS
19	Differential scanning calorimetry in food research—A review. Food Chemistry, 1983, 10, 239-265.	8.2	203
20	Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. Journal of Cereal Science, 2003, 38, 15-31.	3.7	202
21	Amylolytic enzymes and products derived from starch: A review. Critical Reviews in Food Science and Nutrition, 1995, 35, 373-403.	10.3	191
22	Composition and Physicochemical Properties of Linseed (Linum usitatissimum L.) Mucilage. Journal of Agricultural and Food Chemistry, 1994, 42, 240-247.	5.2	188
23	Effect of arabinoxylans on bread-making quality of wheat flours. Food Chemistry, 1995, 53, 165-171.	8.2	186
24	Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 2004, 64, 9-21.	5.2	184
25	Action of α-amylases on amylose-lipid complex superstructures. Journal of Cereal Science, 1991, 13, 129-143.	3.7	180
26	Functional Properties of Flax Seed Mucilage. Journal of Food Science, 1989, 54, 1302-1305.	3.1	173
27	Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: chemical, physical and sensory attributes. International Dairy Journal, 2002, 12, 525-540.	3.0	169
28	Effects of two barley \hat{l}^2 -glucan isolates on wheat flour dough and bread properties. Food Chemistry, 2010, 119, 1159-1167.	8.2	167
29	Influence of lipids on the thermal and mechanical properties of concentrated starch gels. Journal of Agricultural and Food Chemistry, 1991, 39, 833-840.	5.2	165
30	Chemical Structure, Molecular Size Distributions, and Rheological Properties of Flaxseed Gum. Journal of Agricultural and Food Chemistry, 1994, 42, 1891-1895.	5.2	164
31	In vitrolipid digestion of chitinnanocrystal stabilized o/w emulsions. Food and Function, 2013, 4, 121-129.	4.6	162
32	Oxidative gelation studies of water-soluble pentosans from wheat. Journal of Cereal Science, 1990, 11, 153-169.	3.7	153
33	Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chemistry, 1998, 62, 333-342.	8.2	153
34	Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state: effects of copigmentation and glass transition. Food Chemistry, 2003, 83, 423-436.	8.2	151
35	Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology, 2017, 35, 139-162.	3.1	147
36	Composite pullulan-whey protein nanofibers made by electrospinning: Impact of process parameters on fiber morphology and physical properties. Food Hydrocolloids, 2018, 77, 726-735.	10.7	143

#	Article	IF	CITATIONS
37	Water vapour barrier and tensile properties of composite caseinate-pullulan films: Biopolymer composition effects and impact of beeswax lamination. Food Chemistry, 2007, 101, 753-764.	8.2	140
38	Optimization of an Aqueous Extraction Process for Flaxseed Gum by Response Surface Methodology. LWT - Food Science and Technology, 1994, 27, 363-369.	5.2	137
39	Solution flow behavior and gelling properties of water-soluble barley (1→3,1→4)-β-glucans varying in molecular size. Journal of Cereal Science, 2004, 39, 119-137.	3.7	137
40	On the supermolecular structure and metastability of glycerol monostearate-amylose complex. Carbohydrate Polymers, 1990, 13, 185-206.	10.2	133
41	Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage. Food Chemistry, 2003, 80, 261-273.	8.2	133
42	Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydrate Polymers, 1999, 38, 47-58.	10.2	130
43	Applicability of a microbial Time Temperature Indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat. International Journal of Food Microbiology, 2009, 133, 272-278.	4.7	130
44	Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chemistry, 2012, 134, 1624-1632.	8.2	130
45	Rheological properties and stability of model salad dressing emulsions prepared with a dry-heated soybean protein isolate–dextran mixture. Food Hydrocolloids, 2005, 19, 1025-1031.	10.7	128
46	Hempseed meal protein isolates prepared by different isolation techniques. Part I. physicochemical properties. Food Hydrocolloids, 2018, 79, 526-533.	10.7	128
47	Modifications in stability and structure of whey protein-coated o/w emulsions by interacting chitosan and gum arabic mixed dispersions. Food Hydrocolloids, 2010, 24, 8-17.	10.7	123
48	Molecular weight effects on solution rheology of pullulan and mechanical properties of its films. Carbohydrate Polymers, 2003, 52, 151-166.	10.2	122
49	Effect of molecular size on physical properties of wheat arabinoxylan. Journal of Agricultural and Food Chemistry, 1992, 40, 561-568.	5.2	112
50	Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Research International, 2010, 43, 2402-2408.	6.2	111
51	Influence of structure on the physicochemical properties of wheat arabinoxylan. Carbohydrate Polymers, 1992, 17, 237-247.	10.2	108
52	Complex Coacervation as a Novel Microencapsulation Technique to Improve Viability of Probiotics Under Different Stresses. Food and Bioprocess Technology, 2014, 7, 2767-2781.	4.7	106
53	Eugenol Induced Inhibition of Extracellular Enzyme Production by Bacillus subtilis. Journal of Food Protection, 1989, 52, 399-403.	1.7	105
54	Kinetic studies of degradation of saffron carotenoids encapsulated in amorphous polymer matrices. Food Chemistry, 2000, 71, 199-206.	8.2	103

#	Article	IF	CITATIONS
55	Effect of barley β-glucan molecular size and level on wheat dough rheological properties. Journal of Food Engineering, 2009, 91, 594-601.	5.2	102
56	Modelling of rheological, microbiological and acidification properties of a fermented milk product containing a probiotic strain of Lactobacillus paracasei. International Dairy Journal, 2003, 13, 517-528.	3.0	101
57	Water sorption and thermo-mechanical properties of water/sorbitol-plasticized composite biopolymer films: Caseinate–pullulan bilayers and blends. Food Hydrocolloids, 2006, 20, 1057-1071.	10.7	101
58	Physical characteristics, enzymic digestibility and structure of chemically modified smooth pea and waxy maize starches. Journal of Agricultural and Food Chemistry, 1982, 30, 925-930.	5.2	100
59	Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme and Microbial Technology, 2002, 31, 122-132.	3.2	100
60	Biodegradable films made from low density polyethylene (LDPE), wheat starch and soluble starch for food packaging applications. Part 2. Carbohydrate Polymers, 1997, 33, 227-242.	10.2	99
61	Cryogelation of cereal β-glucans: structure and molecular size effects. Food Hydrocolloids, 2004, 18, 933-947.	10.7	98
62	Effect of barley and oat \hat{l}^2 -glucan concentrates on gluten-free rice-based doughs and bread characteristics. Food Hydrocolloids, 2015, 48, 197-207.	10.7	97
63	Biopolymer-based coacervates: Structures, functionality and applications in food products. Current Opinion in Colloid and Interface Science, 2017, 28, 96-109.	7.4	96
64	Modelling of the acidification process and rheological properties of milk fermented with a yogurt starter culture using response surface methodology. Food Chemistry, 2003, 83, 437-446.	8.2	95
65	Water extractable (1→3,1→4)-β-d-glucans from barley and oats: An intervarietal study on their structural features and rheological behaviour. Journal of Cereal Science, 2005, 42, 213-224.	3.7	95
66	Metastability of Nematic Gels Made of Aqueous Chitin Nanocrystal Dispersions. Biomacromolecules, 2010, 11, 175-181.	5.4	95
67	Degradation kinetics of beetroot pigment encapsulated in polymeric matrices. Journal of the Science of Food and Agriculture, 2001, 81, 691-700.	3.5	94
68	Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids, 2010, 24, 49-59.	10.7	94
69	On the multiple melting transitions of starch/monoglyceride systems. Food Chemistry, 1986, 22, 279-295.	8.2	92
70	Food emulsions as delivery systems for flavor compounds: A review. Critical Reviews in Food Science and Nutrition, 2017, 57, 3173-3187.	10.3	92
71	Effects of a commercial oat-β-glucan concentrate on the chemical, physico-chemical and sensory attributes of a low-fat white-brined cheese product. Food Research International, 2004, 37, 83-94.	6.2	91
72	Simultaneous determination of phenolic acids and flavonoids in rice using solidâ€phase extraction and <scp>RPâ€HPLC</scp> with photodiode array detection. Journal of Separation Science, 2012, 35, 1603-1611.	2.5	91

#	Article	IF	CITATIONS
73	Fermented Cereal-based Products: Nutritional Aspects, Possible Impact on Gut Microbiota and Health Implications. Foods, 2020, 9, 734.	4.3	91
74	Rheological and sensory properties of yogurt from skim milk and ultrafiltered retentates. International Dairy Journal, 1992, 2, 311-323.	3.0	90
75	Evaluation of carob pod as a substrate for pullulan production byAureobasidium pullulans. Applied Biochemistry and Biotechnology, 1995, 55, 27-44.	2.9	89
76	Kinetic Studies of Saffron (Crocus sativus L.) Quality Deterioration. Journal of Agricultural and Food Chemistry, 1997, 45, 2890-2898.	5.2	89
77	Influence of preparation methods on physicochemical and gelation properties of chickpea protein isolates. Food Hydrocolloids, 2009, 23, 337-343.	10.7	88
78	Structural Transitions and Related Physical Properties of Starch. , 2009, , 293-372.		88
79	Properties and Structure of Amylose-Glyceryl Monostearate Complexes Formed in Solution or on Extrusion of Wheat Flour. Journal of Food Science, 1989, 54, 950-957.	3.1	87
80	Impact of edible coatings and packaging on quality of white asparagus (Asparagus officinalis, L.) during cold storage. Food Chemistry, 2009, 117, 55-63.	8.2	87
81	Thermal and mechanical properties of concentrated rice starch gels of varying composition. Food Chemistry, 1993, 48, 243-250.	8.2	85
82	Development of a Microbial Time/Temperature Indicator Prototype for Monitoring the Microbiological Quality of Chilled Foods. Applied and Environmental Microbiology, 2008, 74, 3242-3250.	3.1	81
83	Structure development and acidification kinetics in fermented milk containing oat β-glucan, a yogurt culture and a probiotic strain. Food Hydrocolloids, 2014, 39, 204-214.	10.7	79
84	Textural Characteristics of Wholewheat Pasta and Pasta Containing Non-Starch Polysaccharides. Journal of Food Science, 1995, 60, 1321-1324.	3.1	71
85	Stability and rheology of egg-yolk-stabilized concentrated emulsions containing cereal β-glucans of varying molecular size. Food Hydrocolloids, 2004, 18, 987-998.	10.7	71
86	Studies on the structure of wheat-endosperm arabinoxylans. Carbohydrate Polymers, 1994, 24, 61-71.	10.2	70
87	Isolation, structural features and rheological properties of water-extractableβ-glucans from different Greek barley cultivars. Journal of the Science of Food and Agriculture, 2004, 84, 1170-1178.	3.5	68
88	Non-equilibrium melting of amylose-V complexes. Carbohydrate Polymers, 1986, 6, 269-288.	10.2	66
89	Structure and physicochemical properties of β-glucans and arabinoxylans isolated from hull-less barley. Food Hydrocolloids, 2003, 17, 831-844.	10.7	66
90	Phase Transitions, Solubility, and Crystallization Kinetics of Phytosterols and Phytosterolâ^'Oil Blends. Journal of Agricultural and Food Chemistry, 2007, 55, 1790-1798.	5.2	64

#	Article	IF	CITATIONS
91	Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochemistry, 1999, 34, 355-366.	3.7	61
92	Combined chemical and enzymic treatments of corn husk lignocellulosics. Journal of the Science of Food and Agriculture, 1991, 56, 195-214.	3.5	60
93	Properties of emulsions stabilised by sodium caseinate–chitosan complexes. International Dairy Journal, 2012, 26, 94-101.	3.0	60
94	A comparative study of the effect of sugars on the thermal and mechanical properties of concentrated waxy maize, wheat, potato and pea starch gels. Food Chemistry, 1995, 52, 255-262.	8.2	59
95	Aqueous foams stabilized by chitin nanocrystals. Soft Matter, 2015, 11, 6245-6253.	2.7	57
96	Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability. LWT - Food Science and Technology, 2017, 77, 282-289.	5.2	56
97	Chemical and physical properties of yellow mustard (Sinapis alba L.) mucilage. Food Chemistry, 1993, 46, 169-176.	8.2	55
98	Biopolymer composites for engineering food structures to control product functionality. Food Structure, 2014, 1, 39-54.	4.5	54
99	Production and Characterization of Pullulan from Beet Molasses Using a Nonpigmented Strain of Aureobasidium pullulans in Batch Culture. Applied Biochemistry and Biotechnology, 2002, 97, 01-22.	2.9	53
100	Processing and formulation effects on rheological behavior of barley β-glucan aqueous dispersions. Food Chemistry, 2005, 91, 505-516.	8.2	53
101	Preparation and characterization of composite sodium caseinate edible films incorporating naturally emulsified oil bodies. Food Hydrocolloids, 2013, 30, 232-240.	10.7	53
102	Structural characteristics and rheological properties of locust bean galactomannans: a comparison of samples from different carob tree populations. Journal of the Science of Food and Agriculture, 2001, 81, 68-75.	3.5	52
103	Structural variation and rheological properties of water-extractable arabinoxylans from six Greek wheat cultivars. Food Chemistry, 2011, 126, 526-536.	8.2	51
104	Effect of polyhydroxy compounds on structure formation in waxy maize starch gels: a calorimetric study. Carbohydrate Polymers, 1994, 23, 193-202.	10.2	47
105	Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. Journal of Food Science and Technology, 2016, 53, 3939-3947.	2.8	47
106	Mixed aqueous chitin nanocrystal–whey protein dispersions: Microstructure and rheological behaviour. Food Hydrocolloids, 2011, 25, 935-942.	10.7	46
107	Rheological characteristics and physicochemical stability of dressing-type emulsions made of oil bodies–egg yolk blends. Food Chemistry, 2012, 134, 64-73.	8.2	46
108	Impact of acidification and protein fortification on thermal properties of rice, potato and tapioca starches and rheological behaviour of their gels. Food Hydrocolloids, 2018, 79, 20-29.	10.7	46

#	Article	IF	CITATIONS
109	Physicochemical properties of commercial starch hydrolyzates in the frozen state. Food Chemistry, 1999, 64, 537-546.	8.2	45
110	Influence of water and barley β-glucan addition on wheat dough viscoelasticity. Food Research International, 2010, 43, 57-65.	6.2	45
111	Natural food colorants derived from onion wastes: Application in a yoghurt product. Electrophoresis, 2018, 39, 1975-1983.	2.4	45
112	Effect of β-glucan molecular weight on rice flour dough rheology, quality parameters of breads and inÂvitro starch digestibility. LWT - Food Science and Technology, 2017, 82, 446-453.	5.2	44
113	Kinetic modelling of non-enzymatic browning of apple juice concentrates differing in water activity under isothermal and dynamic heating conditions. Food Chemistry, 2008, 107, 785-796.	8.2	43
114	Structure and Rheological Behaviour of Arabinoxylans from Canadian Bread Wheat Flours. LWT - Food Science and Technology, 1994, 27, 550-555.	5.2	42
115	Microencapsulated cells of Lactobacillus paracasei subsp. paracasei in biopolymer complex coacervates and their function in a yogurt matrix. Food and Function, 2017, 8, 554-562.	4.6	42
116	Whey proteins: Musings on denaturation, aggregate formation and gelation. Critical Reviews in Food Science and Nutrition, 2020, 60, 3793-3806.	10.3	42
117	Physicochemical properties of jet milled wheat flours and doughs. Food Hydrocolloids, 2018, 80, 111-121.	10.7	41
118	Recent advances in plant essential oils and extracts: Delivery systems and potential uses as preservatives and antioxidants in cheese. Trends in Food Science and Technology, 2021, 116, 264-278.	15.1	41
119	Flour constituent interactions and their influence on dough rheology and quality of semi-sweet biscuits: A mixture design approach with reconstituted blends of gluten, water-solubles and starch fractions. Journal of Cereal Science, 2008, 48, 144-158.	3.7	40
120	Hempseed meal protein isolates prepared by different isolation techniques. Part II. gelation properties at different ionic strengths. Food Hydrocolloids, 2018, 81, 481-489.	10.7	40
121	NMR characterization of a 4-O-methyl-β-D-glucuronic acid-containing rhamnogalacturonan from yellow mustard (Sinapis alba L.) mucilage. Carbohydrate Research, 1996, 292, 173-183.	2.3	40
122	Effect of barley β-glucan concentration on the microstructural and mechanical behaviour of acid-set sodium caseinate gels. Food Hydrocolloids, 2006, 20, 749-756.	10.7	39
123	NMR characterization of a 4-O-methyl-β-d-glucuronic acid-containing rhamnogalacturonan from yellow mustard (Sinapis alba L.) mucilage. Carbohydrate Research, 1996, 292, 173-183.	2.3	38
124	Fractionation of Oat (1→3), (1→4)-β-D-Glucans and Characterisation of the Fractions. Journal of Cereal Science, 1998, 27, 321-325.	3.7	38
125	Composition and molecular structure of polysaccharides released from barley endosperm cell walls by sequential extraction with water, malt enzymes, and alkali. Journal of Cereal Science, 2008, 48, 304-318.	3.7	38
126	Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation. Journal of Colloid and Interface Science, 2012, 375, 50-59.	9.4	37

#	Article	IF	CITATIONS
127	Compositional and morphological characteristics of cow cockle (Saponaria vaccaria) seed, a potential alternative crop. Journal of Agricultural and Food Chemistry, 1992, 40, 1520-1523.	5.2	36
128	The effect of osmotic adjustment on the mechanical properties of potato parenchyma. Food Research International, 1996, 29, 481-488.	6.2	36
129	Structural and functional aspects of cereal arabinoxylans and β-glucans. Developments in Food Science, 2000, 41, 361-384.	0.0	36
130	Modulating the physical state and functionality of phytosterols by emulsification and organogel formation: Application in a model yogurt system. Journal of Functional Foods, 2017, 33, 386-395.	3.4	36
131	Enhancement of pullulan production by aureobasidium pullulans in batch culture using olive oil and sucrose as carbon sources. Applied Biochemistry and Biotechnology, 1998, 74, 13-30.	2.9	35
132	WATER PLASTICIZATION EFFECTS ON CRYSTALLIZATION BEHAVIOR OF LACTOSE IN A CO-LYOPHILIZED AMORPHOUS POLYSACCHARIDE MATRIX AND ITS RELEVANCE TO THE GLASS TRANSITION. International Journal of Food Properties, 2002, 5, 463-482.	3.0	35
133	Impact of mixed-linkage (1→3, 1→4) β-glucans on physical properties of acid-set skim milk gels. International Dairy Journal, 2008, 18, 312-322.	3.0	35
134	Impact of flour particle size and autoclaving on Î ² -glucan physicochemical properties and starch digestibility of barley rusks as assessed by in vitro assays. Bioactive Carbohydrates and Dietary Fibre, 2014, 4, 58-73.	2.7	34
135	PURIFICATION AND CHARACTERIZATION OF JERUSALEM ARTICHOKE (HELIANTHUS TUBEROSUS L) POLYPHENOL OXIDASE. Journal of Food Biochemistry, 1988, 12, 1-22.	2.9	33
136	Physicochemical and functional aspects of composite wheat-roasted chickpea flours in relation to dough rheology, bread quality and staling phenomena. Food Hydrocolloids, 2022, 124, 107322.	10.7	33
137	Electron spin resonance studies of starch-water-probe interactions. Carbohydrate Polymers, 1987, 7, 51-70.	10.2	32
138	A micro- and macro-scale approach to probe the dynamics of sol–gel transition in cereal β-glucan solutions varying in molecular characteristics. Food Hydrocolloids, 2014, 42, 81-91.	10.7	30
139	Impact of flour particle size and hydrothermal treatment on dough rheology and quality of barley rusks. Food Hydrocolloids, 2019, 87, 561-569.	10.7	30
140	Comparative Evaluation of the Nutritional, Antinutritional, Functional, and Bioactivity Attributes of Rice Bran Stabilized by Different Heat Treatments. Foods, 2021, 10, 57.	4.3	30
141	A fractal analysis approach to viscoelasticity of physically cross-linked barley β-glucan gel networks. Colloids and Surfaces B: Biointerfaces, 2006, 49, 145-152.	5.0	29
142	Sequential solvent extraction and structural characterization of polysaccharides from the endosperm cell walls of barley grown in different environments. Carbohydrate Polymers, 2008, 73, 621-639.	10.2	29
143	Effect of the substrate's microstructure on the growth of Listeria monocytogenes. Food Research International, 2014, 64, 683-691.	6.2	29
144	Development and Validation of a Mediterranean Oriented Culture-Specific Semi-Quantitative Food Frequency Questionnaire. Nutrients, 2016, 8, 522.	4.1	29

#	Article	IF	CITATIONS
145	Impact of commercial soft wheat flour streams on dough rheology and quality attributes of cookies. Journal of Food Engineering, 2009, 90, 228-237.	5.2	28
146	Effect of soluble polysaccharides addition on rheological properties and microstructure of chitin nanocrystal aqueous dispersions. Carbohydrate Polymers, 2013, 95, 324-331.	10.2	28
147	LC-MS Identification and Quantification of Phenolic Compounds in Solid Residues from the Essential Oil Industry. Antioxidants, 2021, 10, 2016.	5.1	28
148	Concurrent phase separation and gelation in mixed oat β-glucans/sodium caseinate and oat β-glucans/pullulan aqueous dispersions. Food Hydrocolloids, 2009, 23, 886-895.	10.7	27
149	Wheat bread quality attributes using jet milling flour fractions. LWT - Food Science and Technology, 2018, 92, 540-547.	5.2	26
150	Compositional characteristics and volatile organic compounds of traditional <scp>PDO</scp> Feta cheese made in two different mountainous areas of Greece. International Journal of Dairy Technology, 2018, 71, 673-682.	2.8	26
151	Impact of Roasted Yellow Split Pea Flour on Dough Rheology and Quality of Fortified Wheat Breads. Foods, 2021, 10, 1832.	4.3	26
152	Mixed whey protein isolate-egg yolk or yolk plasma heat-set gels: Rheological and volatile compounds characterisation. Food Research International, 2014, 62, 492-499.	6.2	25
153	Crystalline microstructure and physicochemical properties of olive oil oleogels formulated with monoglycerides and phytosterols. LWT - Food Science and Technology, 2022, 154, 112815.	5.2	25
154	Modified fermented sausages with olive oil oleogel and NaCl–KCl substitution for improved nutritional quality. LWT - Food Science and Technology, 2022, 158, 113172.	5.2	25
155	Modifying the physical properties of dairy protein films for controlled release of antifungal agents. Food Hydrocolloids, 2014, 39, 195-203.	10.7	24
156	Effect of Microwave Radiation Pretreatment of Rice Flour on Gluten-Free Breadmaking and Molecular Size of β-Glucans in the Fortified Breads. Food and Bioprocess Technology, 2017, 10, 1412-1421.	4.7	24
157	Mashes to Mashes, Crust to Crust. Presenting a novel microstructural marker for malting in the archaeological record. PLoS ONE, 2020, 15, e0231696.	2.5	24
158	Engineering interfacial properties by anionic surfactant–chitosan complexes to improve stability of oil-in-water emulsions. Food and Function, 2012, 3, 312.	4.6	23
159	Physicochemical properties of zein-based edible films and coatings for extending wheat bread shelf life. Food Hydrocolloids, 2022, 132, 107856.	10.7	23
160	Solute effects on the thermal stability of glycerol monostearate-amylose complex superstructures Carbohydrate Research, 1990, 208, 199-213.	2.3	21
161	Kinetic modelling of non-enzymatic browning in honey and diluted honey systems subjected to isothermal and dynamic heating protocols. Journal of Food Engineering, 2009, 95, 541-550.	5.2	21
162	Encapsulation of β-carotene into food-grade nanofibers via coaxial electrospinning of hydrocolloids: Enhancement of oxidative stability and photoprotection. Food Hydrocolloids, 2022, 133, 107949.	10.7	21

#	Article	IF	CITATIONS
163	Dynamic oscillation measurements of starch networks at temperatures above 100 °C. Carbohydrate Research, 2000, 329, 179-187.	2.3	20
164	Semi-sweet biscuit making potential of soft wheat flour patent, middle-cut and clear mill streams made with native and reconstituted flours. Journal of Cereal Science, 2007, 46, 119-131.	3.7	20
165	Comparison of the composition and properties of canola and sunflower oil sediments with canola seed hull lipids. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 493-498.	1.9	19
166	Phytochemical profiles and antioxidant capacity of pigmented and non-pigmented genotypes of rice (<i>Oryza sativa</i> L.). Cereal Research Communications, 2016, 44, 98-110.	1.6	19
167	Changing Trends in Nutritional Behavior among University Students in Greece, between 2006 and 2016. Nutrients, 2018, 10, 64.	4.1	19
168	Physical Properties of Chitosan Films Containing Pomegranate Peel Extracts Obtained by Deep Eutectic Solvents. Foods, 2021, 10, 1262.	4.3	19
169	Gradient ammonium sulphate fractionation of galactomannans. Food Hydrocolloids, 1996, 10, 295-300.	10.7	18
170	Barley β-glucan cryogels as encapsulation carriers of proteins: Impact of molecular size on thermo-mechanical and release properties. Bioactive Carbohydrates and Dietary Fibre, 2015, 6, 99-108.	2.7	18
171	1H NMR-based metabolomics reveals the effect of maternal habitual dietary patterns on human amniotic fluid profile. Scientific Reports, 2018, 8, 4076.	3.3	18
172	Formation and partial characterization of canola oil sediment. JAOCS, Journal of the American Oil Chemists' Society, 1993, 70, 1009-1015.	1.9	17
173	Yellow mustard mucilage: chemical structure and rheological properties. Food Hydrocolloids, 1994, 8, 203-214.	10.7	17
174	Optimization of a Green Extraction/Inclusion Complex Formation Process to Recover Antioxidant Polyphenols from Oak Acorn Husks (Quercus Robur) Using Aqueous 2-Hydroxypropyl-β-Cyclodextrin/Glycerol Mixtures. Environments - MDPI, 2016, 3, 3.	3.3	17
175	Bioactive Components and Antioxidant Activity Distribution in Pearling Fractions of Different Greek Barley Cultivars. Foods, 2020, 9, 783.	4.3	17
176	NMR characterization of a water-soluble 1,4-linked β-d-glucan having ether groups from yellow mustard (Sinapis alba L.) mucilage. Carbohydrate Polymers, 1995, 27, 117-122.	10.2	16
177	Water-soluble yellow mustard (Sinapis alba L.) polysaccharides: partial characterization, molecular size distribution and rheological properties. Carbohydrate Polymers, 1993, 20, 215-225.	10.2	15
178	Synergistic interactions between yellow mustard polysaccharides and galactomannans. Carbohydrate Polymers, 1995, 27, 123-127.	10.2	15
179	Effects of polyols on cryostructurization of barley β-glucans. Food Hydrocolloids, 2008, 22, 263-277.	10.7	15
180	Microrheology and microstructure of water-in-water emulsions containing sodium caseinate and locust bean gum. Food and Function, 2018, 9, 2840-2852.	4.6	14

#	Article	IF	CITATIONS
181	ISOLATION AND SOME PROPERTIES OF AN ACIDIC FRACTION OF POLYPHENOL OXIDASE FROM JERUSALEM ARTICHOKE(HELIANTHUS TUBEROSUS L.). Journal of Food Biochemistry, 1988, 12, 23-35.	2.9	13
182	Impact of emulsifier-polysaccharide interactions on the stability and rheology of stabilised oil-in-water emulsions. Procedia Food Science, 2011, 1, 57-61.	0.6	13
183	Acid-induced gelation of aqueous WPI–CMC solutions: Effect on orange oil aroma compounds retention. Food Hydrocolloids, 2013, 30, 368-374.	10.7	13
184	Inactivation of Endogenous Rice Flour β-Glucanase by Microwave Radiation and Impact on Physico-chemical Properties of the Treated Flour. Food and Bioprocess Technology, 2016, 9, 1562-1573.	4.7	13
185	Edible Films and Coatings with Pectin. , 2020, , 99-123.		12
186	Effect of ethanol on the microstructure and rheological properties of whey proteins: Acid-induced cold gelation. LWT - Food Science and Technology, 2021, 139, 110518.	5.2	12
187	Cryogelation phenomena in mixed skim milk powder – barley β-glucan–polyol aqueous dispersions. Food Research International, 2007, 40, 793-802.	6.2	11
188	Impact of endogenous constituents from different flour milling streams on dough rheology and semi-sweet biscuit making potential by partial substitution of a commercial soft wheat flour. LWT - Food Science and Technology, 2009, 42, 363-371.	5.2	11
189	Fractionation, Structural Analysis, and Rheological Properties of Water-Soluble Yellow Mustard (Sinapis alba L.) Polysaccharides. Journal of Agricultural and Food Chemistry, 1994, 42, 657-664.	5.2	10
190	Physical behaviour and composition of low- and high-melting fractions of sediment in canola oil. Food Chemistry, 1995, 53, 35-41.	8.2	10
191	Effect of oat and barley β-glucans on inhibition of cytokine-induced adhesion molecule expression in human aortic endothelial cells: Molecular structure–function relations. Carbohydrate Polymers, 2011, 84, 153-161.	10.2	10
192	Innovative Biobased Materials for Packaging Sustainability. , 2016, , 167-189.		9
193	Effect of chemical pretreatments on the thermal degradation of corn husk lignocellulosics. Journal of Agricultural and Food Chemistry, 1986, 34, 1019-1024.	5.2	8
194	Effects of crystallization conditions on sedimentation in canola oil. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 409-415.	1.9	7
195	Reinvigorating Modern Breadmaking Based on Ancient Practices and Plant Ingredients, with Implementation of a Physicochemical Approach. Foods, 2021, 10, 789.	4.3	7
196	A sourdough process based on fermented chickpea extract as leavening and anti-staling agent for improving the quality of gluten-free breads. Food Research International, 2022, 159, 111593.	6.2	7
197	Effect of n-alkyl glucosides on waxy maize and wheat starch retrogradation. Carbohydrate Research, 1996, 280, 157-169.	2.3	6
198	Elaboration of novel and comprehensive protocols toward determination of textural properties and other sensorial attributes of canning peach fruit. Journal of Texture Studies, 2021, 52, 228-239.	2.5	6

#	Article	IF	CITATIONS
199	Antibacterial and Antioxidant Properties of Oregano and Rosemary Essential Oil Distillation By-Products. , 2021, 6, .		6
200	Characteristics of starch in developing pea seeds. Phytochemistry, 1982, 21, 37-39.	2.9	5
201	Solvent effects on phase transition behavior of canola oil sediment. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 603-608.	1.9	5
202	Gelation of wheat arabinoxylans in the presence of Cu +2 and in aqueous mixtures with cereal β-glucans. Food Chemistry, 2016, 203, 267-275.	8.2	5
203	Influence of Sodium and Maturity Stage on the Antioxidant Properties of Cauliflower and Broccoli Sprouts. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45, 458-465.	1.1	5
204	Nutritional and technological aspects of barley β-glucan enriched biscuits containing isomaltulose as sucrose replacer. Food Hydrocolloids for Health, 2022, 2, 100060.	3.9	5
205	Profiling carotenoid and phenolic compounds in fresh and canned fruit of peach cultivars: Impact of genotype and canning on their concentration. Journal of Food Composition and Analysis, 2022, 114, 104734.	3.9	5
206	Second trimester amniotic fluid uric acid, potassium, and cysteine to methionine ratio levels as possible signs of early preeclampsia: A case report. Taiwanese Journal of Obstetrics and Gynecology, 2016, 55, 874-876.	1.3	4
207	Impact of Sugar Type Addition and Fermentation Temperature on Pomegranate Alcoholic Beverage Production and Characteristics. Antioxidants, 2021, 10, 889.	5.1	4
208	The effect of genotype and storage on compositional, sensorial and textural attributes of canned fruit from commercially important non-melting peach cultivars. Journal of Food Composition and Analysis, 2021, 103, 104080.	3.9	4
209	Development of a Cotton Honey-Based Spread by Controlling Compositional and Processing Parameters. Food Biophysics, 2021, 16, 365-380.	3.0	3
210	DNA-Based Identification of Eurasian Vicia Species Using Chloroplast and Nuclear DNA Barcodes. Plants, 2022, 11, 947.	3.5	3
211	Stability of natural food colorants derived from onion leaf wastes. Food Chemistry, 2022, 386, 132750.	8.2	3
212	Innovative bio-based materials for packaging sustainability. , 2022, , 173-192.		2
213	Effect of Process Temperature on the Physical State of Beef Meat Constituents – Implications on Diffusion Kinetics during Osmotic Dehydration. Food and Bioprocess Technology, 2022, 15, 706-716.	4.7	2
214	Framework of Methodology to Assess the Link between A Posteriori Dietary Patterns and Nutritional Adequacy: Application to Pregnancy. Metabolites, 2022, 12, 395.	2.9	2
215	Germination and Outgrowth of Bacillus subtilis Spores in the Presence of Selected Antioxidants. Journal of Food Protection, 1987, 50, 206-211.	1.7	1
216	Biopolymer-based films as carriers of antimicrobial agents. Procedia Food Science, 2011, 1, 190-196.	0.6	1

#	Article	IF	CITATIONS
217	Using particle tracking to probe the local dynamics of barley β-glucan solutions. Procedia Food Science, 2011, 1, 294-301.	0.6	1
218	Development of low fat: Low salt processed meat products. Journal on Processing and Energy in Agriculture, 2020, 24, 89-94.	0.4	1
219	Stability and rheology of egg-yolk-stabilized concentrated emulsions containing cereal \$beta;-glucans of varying molecular size. Food Hydrocolloids, 2004, 18, 987-987.	10.7	0
220	β-Glucans. , 2007, , 131-152.		0
221	Cover Image, Volume 52, Issue 2. Journal of Texture Studies, 2021, 52, .	2.5	0
222	Title is missing!. , 2020, 15, e0231696.		0
223	Title is missing!. , 2020, 15, e0231696.		0
224	Title is missing!. , 2020, 15, e0231696.		0
225	Title is missing!. , 2020, 15, e0231696.		0