
Shaheen Hamdy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2222486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Social and Psychological Burden of Dysphagia: Its Impact on Diagnosis and Treatment. Dysphagia, 2002, 17, 139-146.	1.8	630
2	The cortical topography of human swallowing musculature in health and disease. Nature Medicine, 1996, 2, 1217-1224.	30.7	477
3	Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nature Neuroscience, 1998, 1, 64-68.	14.8	432
4	Driving Plasticity in Human Adult Motor Cortex Is Associated with Improved Motor Function after Brain Injury. Neuron, 2002, 34, 831-840.	8.1	369
5	Oropharyngeal dysphagia in older persons – from pathophysiology to adequate intervention: a review and summary of an international expert meeting. Clinical Interventions in Aging, 2016, 11, 189.	2.9	342
6	Identification of the Cerebral Loci Processing Human Swallowing With H ₂ ¹⁵ O PET Activation. Journal of Neurophysiology, 1999, 81, 1917-1926.	1.8	338
7	Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology, 1998, 115, 1104-1112.	1.3	325
8	Post-stroke dysphagia: A review and design considerations for future trials. International Journal of Stroke, 2016, 11, 399-411.	5.9	280
9	Cortical activation during human volitional swallowing: an event-related fMRI study. American Journal of Physiology - Renal Physiology, 1999, 277, G219-G225.	3.4	256
10	Explaining oropharyngeal dysphagia after unilateral hemispheric stroke. Lancet, The, 1997, 350, 686-692.	13.7	254
11	Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology, 1997, 113, 50-59.	1.3	250
12	Dysphagia in stroke patients. Postgraduate Medical Journal, 2006, 82, 383-391.	1.8	232
13	Cortical Processing of Human Somatic and Visceral Sensation. Journal of Neuroscience, 2000, 20, 2657-2663.	3.6	204
14	Prevalence and symptom profiling of oropharyngeal dysphagia in a community dwelling of an elderly population: a self-reporting questionnaire survey. Ecological Management and Restoration, 2011, 24, 476-480.	0.4	187
15	Adjunctive Functional Pharyngeal Electrical Stimulation Reverses Swallowing Disability After Brain Lesions. Gastroenterology, 2010, 138, 1737-1746.e2.	1.3	158
16	Oropharyngeal dysphagia: manifestations and diagnosis. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 49-59.	17.8	156
17	The anatomy and physiology of normal and abnormal swallowing in oropharyngeal dysphagia. Neurogastroenterology and Motility, 2017, 29, e13100.	3.0	129
18	Modulation of human swallowing behaviour by thermal and chemical stimulation in health and after brain injury. Neurogastroenterology and Motility, 2003, 15, 69-77.	3.0	126

#	Article	IF	CITATIONS
19	Unilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowing. Journal of Physiology, 2007, 585, 525-538.	2.9	124
20	Cortical input in control of swallowing. Current Opinion in Otolaryngology and Head and Neck Surgery, 2009, 17, 166-171.	1.8	120
21	Deglutitive laryngeal closure in stroke patients. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 141-146.	1.9	119
22	Induction of long-term plasticity in human swallowing motor cortex following repetitive cortical stimulation. Clinical Neurophysiology, 2004, 115, 1044-1051.	1.5	118
23	Pharyngeal electrical stimulation for early decannulation in tracheotomised patients with neurogenic dysphagia after stroke (PHAST-TRAC): a prospective, single-blinded, randomised trial. Lancet Neurology, The, 2018, 17, 849-859.	10.2	107
24	Pharyngeal Electrical Stimulation for Treatment of Dysphagia in Subacute Stroke. Stroke, 2016, 47, 1562-1570.	2.0	106
25	The Influence of Chemical Gustatory Stimuli and Oral Anaesthesia on Healthy Human Pharyngeal Swallowing. Chemical Senses, 2005, 30, 393-400.	2.0	103
26	Organization and reorganization of human swallowing motor cortex: implications for recovery after stroke*. Clinical Science, 2000, 99, 151-157.	4.3	102
27	Sacral nerve stimulation reduces corticoanal excitability in patients with faecal incontinence. British Journal of Surgery, 2005, 92, 1423-1431.	0.3	100
28	Awareness of Dysphagia by Patients Following Stroke Predicts Swallowing Performance. Dysphagia, 2004, 19, 28-35.	1.8	97
29	Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. NeuroImage, 2004, 22, 1447-1455.	4.2	97
30	Organization and reorganization of human swallowing motor cortex: implications for recovery after stroke*. Clinical Science, 2000, 99, 151.	4.3	94
31	European Stroke Organisation and European Society for Swallowing Disorders guideline for the diagnosis and treatment of post-stroke dysphagia. European Stroke Journal, 2021, 6, LXXXIX-CXV.	5.5	92
32	Acceptability of oral solid medicines in older adults with and without dysphagia: A nested pilot validation questionnaire based observational study. International Journal of Pharmaceutics, 2016, 512, 374-381.	5.2	81
33	Evaluating Oral Stimulation as a Treatment for Dysphagia after Stroke. Dysphagia, 2006, 21, 49-55.	1.8	80
34	Characterizing the Mechanisms of Central and Peripheral Forms of Neurostimulation in Chronic Dysphagic Stroke Patients. Brain Stimulation, 2014, 7, 66-73.	1.6	79
35	Changes in pharyngeal corticobulbar excitability and swallowing behavior after oral stimulation. American Journal of Physiology - Renal Physiology, 2004, 286, G45-G50.	3.4	76
36	Differential changes in human pharyngoesophageal motor excitability induced by swallowing, pharyngeal stimulation, and anesthesia. American Journal of Physiology - Renal Physiology, 2003, 285, G137-G144.	3.4	75

#	Article	IF	CITATIONS
37	Reversal of a Virtual Lesion in Human Pharyngeal Motor Cortex by High Frequency Contralesional Brain Stimulation. Gastroenterology, 2009, 137, 841-849.e1.	1.3	75
38	Sensorimotor modulation of human cortical swallowing pathways. Journal of Physiology, 1998, 506, 857-866.	2.9	74
39	Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex. American Journal of Physiology - Renal Physiology, 2009, 297, G1035-G1040.	3.4	74
40	Predicting Aspiration After Hemispheric Stroke from Timing Measures of Oropharyngeal Bolus Flow and Laryngeal Closure. Dysphagia, 2009, 24, 257-264.	1.8	74
41	Neural Control of Feeding and Swallowing. Physical Medicine and Rehabilitation Clinics of North America, 2008, 19, 709-728.	1.3	71
42	Targeting Unlesioned Pharyngeal Motor Cortex Improves Swallowing in Healthy Individuals and After Dysphagic Stroke. Gastroenterology, 2012, 142, 29-38.	1.3	71
43	The upper oesophageal sphincter. Neurogastroenterology and Motility, 2005, 17, 3-12.	3.0	69
44	Characterising the central mechanisms of sensory modulation in human swallowing motor cortex. Clinical Neurophysiology, 2004, 115, 2382-2390.	1.5	64
45	Visceral hypersensitivity in endometriosis: a new target for treatment?. Gut, 2012, 61, 367-372.	12.1	64
46	The topographic representation of esophageal motor function on the human cerebral cortex. Gastroenterology, 1996, 111, 855-862.	1.3	63
47	The cortical topography of human anorectal musculature. Gastroenterology, 1999, 117, 32-39.	1.3	63
48	Gut feelings about recovery after stroke: the organization and reorganization of human swallowing motor cortex. Trends in Neurosciences, 1998, 21, 278-282.	8.6	62
49	Recognizing the Importance of Dysphagia: Stumbling Blocks and Stepping Stones in the Twenty-First Century. Dysphagia, 2017, 32, 78-82.	1.8	60
50	Nonâ€invasive magnetic stimulation of the human cerebellum facilitates corticoâ€bulbar projections in the swallowing motor system. Neurogastroenterology and Motility, 2011, 23, 831.	3.0	56
51	Laterality effects of human pudendal nerve stimulation on corticoanal pathways: evidence for functional asymmetry. Gut, 1999, 45, 58-63.	12.1	51
52	Pharyngeal Electrical Stimulation in Dysphagia Poststroke. Neurorehabilitation and Neural Repair, 2016, 30, 866-875.	2.9	49
53	Home-based versus office-based biofeedback therapy for constipation with dyssynergic defecation: a randomised controlled trial. The Lancet Gastroenterology and Hepatology, 2018, 3, 768-777.	8.1	49
54	Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing. Journal of Physiology, 2014, 592, 695-709.	2.9	48

#	Article	IF	CITATIONS
55	Examining the Role of Carbonation and Temperature on Water Swallowing Performance: A Swallowing Reaction-Time Study. Chemical Senses, 2012, 37, 799-807.	2.0	47
56	Pharyngeal Electrical Stimulation for Treatment of Poststroke Dysphagia: Individual Patient Data Meta-Analysis of Randomised Controlled Trials. Stroke Research and Treatment, 2015, 2015, 1-8.	0.8	47
57	Mapping Metabolic Brain Activation during Human Volitional Swallowing: A Positron Emission Tomography Study Using [18F]fluorodeoxyglucose. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 520-526.	4.3	45
58	Effects of Neurostimulation on Poststroke Dysphagia: A Synthesis of Current Evidence From Randomized Controlled Trials. Neuromodulation, 2021, 24, 1388-1401.	0.8	44
59	Modulation of human cortical swallowing motor pathways after pleasant and aversive taste stimuli. American Journal of Physiology - Renal Physiology, 2006, 291, G666-G671.	3.4	43
60	Brain imaging correlates of recovered swallowing after dysphagic stroke: A fMRI and DWI study. NeuroImage: Clinical, 2016, 12, 1013-1021.	2.7	43
61	Physiology and Pathophysiology of the Swallowing Area of Human Motor Cortex. Neural Plasticity, 2001, 8, 91-97.	2.2	41
62	Highâ€frequency focal repetitive cerebellar stimulation induces prolonged increases in human pharyngeal motor cortex excitability. Journal of Physiology, 2015, 593, 4963-4977.	2.9	41
63	Cranial nerve modulation of human cortical swallowing motor pathways. American Journal of Physiology - Renal Physiology, 1997, 272, G802-G808.	3.4	40
64	Organization and reorganization of human swallowing motor cortex: implications for recovery after stroke. Clinical Science, 2000, 99, 151-7.	4.3	38
65	Dysphagia in Parkinson's disease: a therapeutic challenge?. Expert Review of Neurotherapeutics, 2010, 10, 875-878.	2.8	37
66	Oral care after stroke: Where are we now?. European Stroke Journal, 2018, 3, 347-354.	5.5	36
67	Cerebellar repetitive transcranial magnetic stimulation restores pharyngeal brain activity and swallowing behaviour after disruption by a cortical virtual lesion. Journal of Physiology, 2019, 597, 2533-2546.	2.9	36
68	Neurophysiological evaluation of healthy human anorectal sensation. American Journal of Physiology - Renal Physiology, 2006, 291, G950-G958.	3.4	35
69	A Magnetic Resonance Spectroscopy Study of Brain Glutamate in a Model of Plasticity in Human Pharyngeal Motor Cortex. Gastroenterology, 2009, 136, 417-424.	1.3	34
70	A Longitudinal Study of Symptoms of Oropharyngeal Dysphagia in an Elderly Community-Dwelling Population. Dysphagia, 2016, 31, 560-566.	1.8	34
71	Rapid rate magnetic stimulation of human sacral nerve roots alters excitability within the corticoâ€anal pathway. Neurogastroenterology and Motility, 2008, 20, 1132-1139.	3.0	32
72	Val66Met in Brain-Derived Neurotrophic Factor Affects Stimulus-Induced Plasticity in the Human Pharyngeal Motor Cortex. Gastroenterology, 2011, 141, 827-836.e3.	1.3	32

#	Article	IF	CITATIONS
73	The Use of Brain Stimulation in Dysphagia Management. Dysphagia, 2017, 32, 209-215.	1.8	31
74	"Virtual―Lesioning of the Human Oropharyngeal Motor Cortex: A Videofluoroscopic Study. Archives of Physical Medicine and Rehabilitation, 2012, 93, 1987-1990.	0.9	28
75	The effects of unilateral and bilateral cerebellar rTMS on human pharyngeal motor cortical activity and swallowing behavior. Experimental Brain Research, 2020, 238, 1719-1733.	1.5	28
76	Priming Pharyngeal Motor Cortex by Repeated Paired Associative Stimulation. Neurorehabilitation and Neural Repair, 2013, 27, 355-362.	2.9	27
77	Characterization of Corticobulbar Pharyngeal Neurophysiology in Dysphagic Patients With Parkinson's Disease. Clinical Gastroenterology and Hepatology, 2014, 12, 2037-2045.e4.	4.4	27
78	Repetitive Transcranial Magnetic Stimulation: a Novel Approach for Treating Oropharyngeal Dysphagia. Current Gastroenterology Reports, 2016, 18, 10.	2.5	26
79	Rapid improvement in brain and swallowing behavior induced by cerebellar repetitive transcranial magnetic stimulation in poststroke dysphagia: A single patient caseâ€controlled study. Neurogastroenterology and Motility, 2019, 31, e13609.	3.0	25
80	Psychometric assessment and validation of the dysphagia severity rating scale in stroke patients. Scientific Reports, 2020, 10, 7268.	3.3	25
81	The Role of the Cerebellum in Swallowing. Dysphagia, 2023, 38, 497-509.	1.8	25
82	Magnetoencephalographic Response Characteristics Associated with Tongue Movement. Dysphagia, 2001, 16, 183-185.	1.8	23
83	A bi-directional assessment of the human brain-anorectal axis. Neurogastroenterology and Motility, 2011, 23, 240-e118.	3.0	23
84	A multinational consensus on dysphagia in Parkinson's disease: screening, diagnosis and prognostic value. Journal of Neurology, 2022, 269, 1335-1352.	3.6	23
85	Consensus on the treatment of dysphagia in Parkinson's disease. Journal of the Neurological Sciences, 2021, 430, 120008.	0.6	23
86	Induction of cortical swallowing activity by transcranial magnetic stimulation in the anaesthetized cat. Neurogastroenterology and Motility, 2001, 13, 65-72.	3.0	22
87	fMRI and MRS measures of neuroplasticity in the pharyngeal motor cortex. NeuroImage, 2015, 117, 1-10.	4.2	22
88	Pharyngeal electrical stimulation device for the treatment of neurogenic dysphagia: technology update. Medical Devices: Evidence and Research, 2018, Volume 11, 21-26.	0.8	22
89	The Effects of Midline Cerebellar rTMS on Human Pharyngeal Cortical Activity in the Intact Swallowing Motor System. Cerebellum, 2021, 20, 101-115.	2.5	22
90	Topographic mapping of trans-cranial magnetic stimulation data on surface rendered MR images of the brain. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1997, 105, 345-351.	1.4	21

#	Article	IF	CITATIONS
91	Pharyngeal electrical stimulation for neurogenic dysphagia following stroke, traumatic brain injury or other causes: Main results from the PHADER cohort study. EClinicalMedicine, 2020, 28, 100608.	7.1	21
92	ESSD Commentary on Dysphagia Management During COVID Pandemia. Dysphagia, 2020, 36, 764-767.	1.8	21
93	Translumbosacral Neuromodulation Therapy for Fecal Incontinence: A Randomized Frequency Response Trial. American Journal of Gastroenterology, 2021, 116, 162-170.	0.4	21
94	Chapter 20 The organisation and re-organisation of human swallowing motor cortex. Supplements To Clinical Neurophysiology, 2003, 56, 204-210.	2.1	20
95	Remote effects of intermittent theta burst stimulation of the human pharyngeal motor system. European Journal of Neuroscience, 2012, 36, 2493-2499.	2.6	20
96	Brain and behavioral effects of swallowing carbonated water on the human pharyngeal motor system. Journal of Applied Physiology, 2016, 120, 408-415.	2.5	20
97	Design and implementation of Pharyngeal electrical Stimulation for early de-cannulation in TRACheotomized (PHAST-TRAC) stroke patients with neurogenic dysphagia: a prospective randomized single-blinded interventional study. International Journal of Stroke, 2017, 12, 430-437.	5.9	19
98	Cortico-anorectal, Spino-anorectal, and Cortico-spinal Nerve Conduction and Locus of Neuronal Injury in Patients With Fecal Incontinence. Clinical Gastroenterology and Hepatology, 2019, 17, 1130-1137.e2.	4.4	19
99	Modulation of human visceral sensitivity by noninvasive magnetoelectrical neural stimulation in health and irritable bowel syndrome. Pain, 2015, 156, 1348-1356.	4.2	18
100	Effect of diagnosis, surveillance, and treatment of Barrett's oesophagus on health-related quality of life. The Lancet Gastroenterology and Hepatology, 2018, 3, 57-65.	8.1	18
101	Exploring the effects of synchronous pharyngeal electrical stimulation with swallowing carbonated water on cortical excitability in the human pharyngeal motor system. Neurogastroenterology and Motility, 2016, 28, 1391-1400.	3.0	17
102	A pilot study on the efficacy of transcranial direct current stimulation applied to the pharyngeal motor cortex for dysphagia associated with brainstem involvement in multiple sclerosis. Clinical Neurophysiology, 2019, 130, 1017-1024.	1.5	17
103	Videofluoroscopic assessment of dysphagia: A questionnaire survey of protocols, roles and responsibilities of radiology and speech and language therapy personnel. Radiography, 2006, 12, 26-30.	2.1	16
104	Neurostimulation in People with Oropharyngeal Dysphagia: A Systematic Review and Meta-Analyses of Randomised Controlled Trials—Part I: Pharyngeal and Neuromuscular Electrical Stimulation. Journal of Clinical Medicine, 2022, 11, 776.	2.4	16
105	Experiences with functional magnetic resonance imaging at 1 tesla British Journal of Radiology, 1998, 71, 160-166.	2.2	15
106	Automated anatomical demarcation using an active shape model for videofluoroscopic analysis in swallowing. Medical Engineering and Physics, 2010, 32, 1170-1179.	1.7	15
107	Research priority setting in Barrett's oesophagus and gastro-oesophageal reflux disease. The Lancet Gastroenterology and Hepatology, 2017, 2, 824-831.	8.1	15
108	Chronic continuous abdominal pain: evaluation of diagnostic features, iatrogenesis and drug treatments in a cohort of 103 patients. Alimentary Pharmacology and Therapeutics, 2019, 49, 1282-1292.	3.7	15

#	Article	IF	CITATIONS
109	Spinal and pudendal nerve modulation of human corticoanal motor pathways. American Journal of Physiology - Renal Physiology, 1998, 274, G419-G423.	3.4	14
110	Modulation of Activity in Swallowing Motor Cortex Following Esophageal Acidification: A Functional Magnetic Resonance Imaging Study. Dysphagia, 2008, 23, 146-154.	1.8	14
111	Spatiotemporal Visualizations for the Measurement of Oropharyngeal Transit Time From Videofluoroscopy. IEEE Transactions on Biomedical Engineering, 2010, 57, 432-441.	4.2	14
112	Cold thermal oral stimulation produces immediate excitability in human pharyngeal motor cortex. Neurogastroenterology and Motility, 2018, 30, e13384.	3.0	14
113	An Observational Cohort Study Investigating Risk of Malnutrition Using the Malnutrition Universal Screening Tool in Patients with Stroke. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 104405.	1.6	14
114	The BDNF polymorphism Val66Met may be predictive of swallowing improvement post pharyngeal electrical stimulation in dysphagic stroke patients. Neurogastroenterology and Motility, 2017, 29, e13062.	3.0	13
115	Barrett's oesophagus: A qualitative study of patient burden, care delivery experience and followâ€up needs. Health Expectations, 2019, 22, 21-33.	2.6	13
116	Advances in the Use of Neuromodulation for Neurogenic Dysphagia: Mechanisms and Therapeutic Application of Pharyngeal Electrical Stimulation, Transcranial Magnetic Stimulation, and Transcranial Direct Current Stimulation. American Journal of Speech-Language Pathology, 2020, 29, 1044-1064.	1.8	13
117	Efficacy and mechanism of sub-sensory sacral (optimised) neuromodulation in adults with faecal incontinence: study protocol for a randomised controlled trial. Trials, 2018, 19, 336.	1.6	12
118	Genetic influences on the variability of response to repetitive transcranial magnetic stimulation in human pharyngeal motor cortex. Neurogastroenterology and Motility, 2019, 31, e13612.	3.0	12
119	Effects of pharmacological agents for neurogenic oropharyngeal dysphagia: A systematic review and metaâ€analysis. Neurogastroenterology and Motility, 2022, 34, e14220.	3.0	12
120	Neurostimulation in People with Oropharyngeal Dysphagia: A Systematic Review and Meta-Analysis of Randomised Controlled Trials—Part II: Brain Neurostimulation. Journal of Clinical Medicine, 2022, 11, 993.	2.4	12
121	An expert consensus definition of failure of a treatment to provide adequate relief (Fâ€ <scp>PAR</scp>) for chronic constipation – an international Delphi survey. Alimentary Pharmacology and Therapeutics, 2017, 45, 434-442.	3.7	11
122	Homozygosity in the ApoE 4 polymorphism is associated with dysphagic symptoms in older adults. Ecological Management and Restoration, 2015, 28, 97-103.	0.4	10
123	Examining the relationship between sepsis and oropharyngeal dysphagia in hospitalised elderly patients: a retrospective cohort study. Frontline Gastroenterology, 2018, 9, 256-261.	1.8	10
124	The Swallowing Characteristics of Thickeners, Jellies and Yoghurt Observed Using an In Vitro Model. Dysphagia, 2020, 35, 685-695.	1.8	10
125	Current perspectives on the benefits, risks, and limitations of noninvasive brain stimulation (NIBS) for post-stroke dysphagia. Expert Review of Neurotherapeutics, 2021, 21, 1-12.	2.8	10
126	Development and feasibility testing of an oral hygiene intervention for stroke unit care. Gerodontology, 2017, 34, 110-120.	2.0	9

#	Article	IF	CITATIONS
127	Preconditioning human pharyngeal motor cortex enhances directional metaplasticity induced by repetitive transcranial magnetic stimulation. Journal of Physiology, 2020, 598, 5213-5230.	2.9	9
128	The Landscape of Videofluoroscopy in the UK: A Web-Based Survey. Dysphagia, 2021, 36, 250-258.	1.8	9
129	Lasting modulation of human cortical swallowing motor pathways following thermal tongue stimulation. Neurogastroenterology and Motility, 2021, 33, e13938.	3.0	9
130	Spinal Inhibitory Dysfunction in Patients With Painful or Painless Diabetic Neuropathy. Diabetes Care, 2021, 44, 1835-1841.	8.6	9
131	A systematic review and metaâ€analysis of the effects of intraoral treatments for neurogenic oropharyngeal dysphagia. Journal of Oral Rehabilitation, 2022, 49, 92-102.	3.0	9
132	Role of Neurostimulation and Neuroplasticity in the Rehabilitation of Dysphagia After Stroke. Perspectives on Swallowing and Swallowing Disorders (Dysphagia), 2010, 19, 3-9.	0.1	8
133	Route of Feeding as a Proxy for Dysphagia After Stroke and the Effect of Transdermal Glyceryl Trinitrate: Data from the Efficacy of Nitric Oxide in Stroke Randomised Controlled Trial. Translational Stroke Research, 2018, 9, 120-129.	4.2	8
134	Dedicated service improves the accuracy of Barrett's oesophagus surveillance: a prospective comparative cohort study. Frontline Gastroenterology, 2019, 10, 128-134.	1.8	8
135	Effects of Pharyngeal Electrical Stimulation on Swallow Timings, Clearance and Safety in Post-Stroke Dysphagia: Analysis from the Swallowing Treatment Using Electrical Pharyngeal Stimulation (STEPS) Trial. Stroke Research and Treatment, 2021, 2021, 1-8.	0.8	8
136	Effects of Translumbosacral Neuromodulation Therapy on Gut and Brain Interactions and Anorectal Neuropathy in Fecal Incontinence: A Randomized Study. Neuromodulation, 2021, 24, 1269-1277.	0.8	8
137	Assessing the Temporal Reproducibility of Human Esophageal Motor-Evoked Potentials to Transcranial Magnetic Stimulation. Journal of Clinical Neurophysiology, 2006, 23, 374-380.	1.7	7
138	The val66met polymorphism of brainâ€derived neurotrophic factor is associated with human esophageal hypersensitivity. Neurogastroenterology and Motility, 2013, 25, 162.	3.0	7
139	A novel association between <scp>COMT</scp> and <scp>BDNF</scp> gene polymorphisms and likelihood of symptomatic dysphagia in older people. Neurogastroenterology and Motility, 2015, 27, 1223-1231.	3.0	7
140	Genetic determinants of swallowing impairments among community dwelling older population. Experimental Gerontology, 2015, 69, 196-201.	2.8	7
141	Comparative quantitative survey of patient experience in Barrett's oesophagus and other gastrointestinal disorders. BMJ Open Gastroenterology, 2020, 7, e000357.	2.7	7
142	An Exploration of the Application of Noninvasive Cerebellar Stimulation in the Neuro-rehabilitation of Dysphagia after Stroke (EXCITES) Protocol. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104586.	1.6	7
143	Neurostimulation as an Approach to Dysphagia Rehabilitation: Current Evidence. Current Physical Medicine and Rehabilitation Reports, 2013, 1, 257-266.	0.8	6
144	Metaplasticity in the human swallowing system: clinical implications for dysphagia rehabilitation. Neurological Sciences, 2022, 43, 199-209.	1.9	6

#	Article	IF	CITATIONS
145	Reliability of the Penetration–Aspiration Scale and Temporal and Clearance Measures in Poststroke Dysphagia: Videofluoroscopic Analysis From the Swallowing Treatment using Electrical Pharyngeal Stimulation Trial. Journal of Speech, Language, and Hearing Research, 2022, 65, 858-868.	1.6	6
146	Patterns of excitability in human esophageal sensorimotor cortex to painful and nonpainful visceral stimulation. American Journal of Physiology - Renal Physiology, 2002, 282, G332-G337.	3.4	5
147	Genetic determinants of swallowing impairment, recovery and responsiveness to treatment. Current Physical Medicine and Rehabilitation Reports, 2016, 4, 249-256.	0.8	5
148	Optimal Utility of H-Reflex RDD as a Biomarker of Spinal Disinhibition in Painful and Painless Diabetic Neuropathy. Diagnostics, 2021, 11, 1247.	2.6	5
149	A feasibility pilot study of the effects of neurostimulation on dysphagia recovery in Parkinson's Disease. AMRC Open Research, 0, 3, 19.	1.7	5
150	Cerebral Cortical Control of Deglutition. , 2013, , 55-65.		4
151	Endometriosis and irritable bowel syndrome: a dilemma for the gynaecologist and gastroenterologist. The Obstetrician and Gynaecologist, 2016, 18, 9-16.	0.4	4
152	Exploring parameters of gamma transcranial alternating current stimulation (tACS) and fullâ€spectrum transcranial random noise stimulation (tRNS) on human pharyngeal cortical excitability. Neurogastroenterology and Motility, 2021, 33, e14173.	3.0	4
153	OC-063â€Pharyngeal Electrical Stimulation (pes) In Dysphagia Post-acute Stroke: A Double-blind, Randomised Trial. Gut, 2014, 63, A31.1-A31.	12.1	2
154	Hydrogen and methane breath test results are negatively associated with IBS and may reflect transit time in postâ€surgical patients. Neurogastroenterology and Motility, 2021, 33, e14033.	3.0	2
155	Developing patient-orientated Barrett's oesophagus services: the role of dedicated services. BMJ Open Gastroenterology, 2022, 9, e000829.	2.7	2
156	OC-066â€A preliminary study of neurostimulation based interventions in the treatment of chronic dysphagia post-stroke. Gut, 2010, 59, A27.2-A27.	12.1	1
157	Dissecting the Neuroanatomy of Human Swallowing Related Behaviours Non-Invasively Using Diffusion Weighted Magnetic Resonance Imaging. Gastroenterology, 2011, 140, S-363.	1.3	1
158	Direct and Indirect Therapy: Neurostimulation for the Treatment of Dysphagia After Stroke. Medical Radiology, 2011, , 519-538.	0.1	1
159	Comments on Selected Recent Dysphagia Literature. Dysphagia, 2013, 28, 588-594.	1.8	1
160	OC-065â€Functional Cortical Swallowing Activity And Neurotransmitters Concentrations Are Altered Following Neurostimulation Of Pharyngeal Motor Cortex: An Fmri And Resonance Spectroscopy (mrs) Study. Gut, 2014, 63, A32.1-A32.	12.1	1
161	PWE-163â€The Excitatory Effects Of Repetitive Cerebellar Brain Stimulation On Human Swallowing Motor Pathways Are Critically Dependent On Stimulus Duration. Gut, 2014, 63, A196.1-A196.	12.1	1
162	PTU-182ÂCan response to pharyngeal stimulation in dysphagic stroke be predicted by bdnf genetic polymorphisms?. Gut, 2015, 64, A143.1-A143.	12.1	1

#	Article	IF	CITATIONS
163	PTU-122â€A National Survey of GI Physiology & Motility Services in The UK and Ireland. Gut, 2016, 65, A116.2-A117.	12.1	1
164	OC-066â€A National Survey of the Practice and Attitudes Towards Investigations and Biofeedback Therapy for Anorectal Disorders. Gut, 2016, 65, A39.2-A40.	12.1	1
165	PTU-119â€Association Between Acute Sepsis and Oropharyngeal Dysphagia in A Hospitalised Elderly Population. Gut, 2016, 65, A114.2-A115.	12.1	1
166	Su1597 - Translumbar and Transsacral Magnetic Stimulation Therapy for the Treatment of Fecal Incontinence: Interim Analysis of a Dose Ranging Study. Gastroenterology, 2018, 154, S-540-S-541.	1.3	1
167	Investigation of the brain–gut axis. , 2020, , 127-143.		1
168	Swallowing. , 2020, , 602-611.		1
169	A feasibility pilot study of the effects of neurostimulation on swallowing function in Parkinson's Disease. AMRC Open Research, 0, 3, 19.	1.7	1
170	The Organisation and Reorganisation of Human Swallowing Motor Cortex: Implications for Recovery after Stroke. Clinical Science, 1999, 97, 10P-10P.	0.0	0
171	Nociceptive oesophageal stimulation induces increased excitability in human swallowing motor cortex compared to non-nociceptive stimuli. Gastroenterology, 2000, 118, A385.	1.3	0
172	Human brain–gut interactions: mechanisms of swallowing, visceral perception, and anal continence in health and disease. , 2002, , 795-807.		0
173	Comparison of sensory perception and reproducibility of electrical mucosal stimulation (EMS) and rapid balloon distension (RBD) of the healthy human rectum. European Journal of Gastroenterology and Hepatology, 2006, 18, A10.	1.6	0
174	More than a gut feeling: the human visceral brain reâ€visited. Neurogastroenterology and Motility, 2008, 20, 577-579.	3.0	0
175	Measuring Bolus Transit Times from Videofluoroscopy Using Image Profiles and Particle Swarm Optimisation. , 2009, , .		0
176	PTU-140â€Exciting the Human Swallowing Motor System by Combination Stimuli: Effects of Pharyngeal Stimulation and Carbonated Liquids. Gut, 2016, 65, A126.2-A127.	12.1	0
177	Dysphagia in Parkinson's Disease. Medical Radiology, 2017, , 175-198.	0.1	0
178	Direct and Indirect Therapy: Neurostimulation for the Treatment of Dysphagia After Stroke. Medical Radiology, 2018, , 731-761.	0.1	0
179	Reversal of the effects of focal suppression on pharyngeal corticobulbar tracts by chemesthesis coupled with repeated swallowing. Neurogastroenterology and Motility, 2022, 34, e14286.	3.0	0
180	The diagnosis and management of adult neurogenic dysphagia. Nursing Times, 2004, 100, 52-4.	0.2	0

#	Article	IF	CITATIONS
181	Reply to Dziewas, R.; Bath, P.M. Endpoints in Dysphagia Trials. Comment on "Speyer et al. Neurostimulation in People with Oropharyngeal Dysphagia: A Systematic Review and Meta-Analyses of Randomised Controlled Trialsâ€"Part I: Pharyngeal and Neuromuscular Electrical Stimulation. J. Clin. Med. 2022, 11, 776†Journal of Clinical Medicine, 2022, 11, 3403.	2.4	0