Cedric Bertrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2222106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum–Oryza sativa association. Phytochemistry, 2013, 87, 65-77.	2.9	154
2	Host plant secondary metabolite profiling shows a complex, strainâ€dependent response of maize to plant growthâ€promoting rhizobacteria of the genus <i>Azospirillum</i> . New Phytologist, 2011, 189, 494-506.	7.3	147
3	Oregano: Chemical Analysis and Evaluation of Its Antimalarial, Antioxidant, and Cytotoxic Activities. Journal of Food Science, 2011, 76, C512-8.	3.1	122
4	Jasmonate controls late development stages of petal growth in <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 60, 1070-1080.	5.7	90
5	Differential Effects of Rare Specific Flavonoids on Compatible and Incompatible Strains in the <i>Myrica gale</i> - <i>Frankia</i> Actinorhizal Symbiosis. Applied and Environmental Microbiology, 2010, 76, 2451-2460.	3.1	62
6	Identification of the alkaloids ofGalipea officinalisby gas chromatography-mass spectrometry. Phytochemical Analysis, 2001, 12, 312-319.	2.4	52
7	Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microbial Pathogenesis, 2015, 78, 95-102.	2.9	44
8	Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils. Frontiers in Microbiology, 2016, 7, 775.	3.5	31
9	Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research. Algal Research, 2021, 54, 102213.	4.6	29
10	High vs. low yielding oleoresin Pinus halepensis Mill. trees GC terpenoids profiling as diagnostic tool. Annals of Forest Science, 2010, 67, 412-412.	2.0	28
11	Assessment of the ecotoxicological impact of natural and synthetic β-triketone herbicides on the diversity and activity of the soil bacterial community using omic approaches. Science of the Total Environment, 2019, 651, 241-249.	8.0	28
12	Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors. Applied Microbiology and Biotechnology, 2014, 98, 7243-7252.	3.6	27
13	Chemical composition of essential oil and headspace-solid microextracts from fruits of <i>Myrica gale</i> L. and antifungal activity. Natural Product Research, 2008, 22, 1024-1032.	1.8	24
14	Essential oils from Algerian species of Mentha as new bio-control agents against phytopathogen strains. Environmental Science and Pollution Research, 2018, 25, 29889-29900.	5.3	24
15	The bacterial thiopurine methyltransferase tellurite resistance process is highly dependent upon aggregation properties and oxidative stress response. Environmental Microbiology, 2012, 14, 2645-2660.	3.8	21
16	Strain specificity in the Myricaceae - Frankia symbiosis is correlated to plant root phenolics. Functional Plant Biology, 2011, 38, 682.	2.1	21
17	Solid-phase microextraction of volatile compounds from flowers of two Brunfelsia species. Biochemical Systematics and Ecology, 2006, 34, 371-375.	1.3	20
18	An Allelochemical from Myrica gale with Strong Phytotoxic Activity against Highly Invasive Fallopia x bohemica Taxa. Molecules, 2011, 16, 2323-2333.	3.8	20

CEDRIC BERTRAND

#	Article	IF	CITATIONS
19	Chemical composition and antifungal activity of plant extracts traditionally used in organic and biodynamic farming. Environmental Science and Pollution Research, 2018, 25, 29971-29982.	5.3	20
20	Environmental Metabolic Footprinting: A novel application to study the impact of a natural and a synthetic β-triketone herbicide in soil. Science of the Total Environment, 2016, 566-567, 552-558.	8.0	19
21	Differential responses of Oryza sativa secondary metabolism to biotic interactions with cooperative, commensal and phytopathogenic bacteria. Planta, 2015, 242, 1439-1452.	3.2	16
22	Biodegradable herbicide delivery systems with slow diffusion in soil and UV protection properties. Pest Management Science, 2014, 70, 1697-1705.	3.4	15
23	Invasive <i>Fallopia</i> × <i>bohemica</i> interspecific hybrids display different patterns in secondary metabolites. Ecoscience, 2013, 20, 230-239.	1.4	14
24	Environmental Metabolic Footprinting (EMF) vs. half-life: a new and integrative proxy for the discrimination between control and pesticidesÂexposed sediments in order to further characterise pesticides' environmental impact. Environmental Science and Pollution Research, 2018, 25, 29841-29847.	5.3	14
25	Molluscicidal and parasiticidal activities of Eryngium triquetrum essential oil on Schistosoma mansoni and its intermediate snail host Biomphalaria glabrata, a double impact. Parasites and Vectors, 2020, 13, 486.	2.5	14
26	Essential Oils from Two Apiaceae Species as Potential Agents in Organic Crops Protection. Antibiotics, 2021, 10, 636.	3.7	13
27	Constituents of Pilocarpus trachylophus. Fìtoterapìâ, 2001, 72, 844-847.	2.2	12
28	Flazasulfuron: Alcoholysis, Chemical Hydrolysis, and Degradation on Various Minerals. Journal of Agricultural and Food Chemistry, 2003, 51, 7717-7721.	5.2	11
29	Phylogeny and evolution of Baptistonia (Orchidaceae, Oncidiinae) based on molecular analyses, morphology and floral oil evidences. Plant Systematics and Evolution, 2009, 281, 35-49.	0.9	11
30	A new coumarin glucoside, coumarins and alkaloids from Ruta corsica roots. Fìtoterapìâ, 2004, 75, 242-244.	2.2	9
31	Online Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry-based untargeted volatile metabolomics for studying emerging complex biopesticides: A proof of concept. Analytica Chimica Acta, 2020, 1134, 58-74.	5.4	9
32	Polyphenolics and iridoid glycosides from Tarenna madagascariensis. Biochemical Systematics and Ecology, 2007, 35, 314-316.	1.3	8
33	Elionurus muticus as an Alternative Source of Citral from Pampa biome, Brazil. Journal of Oleo Science, 2014, 63, 1109-1116.	1.4	8
34	Deciphering Prunus Responses to PPV Infection: A Way toward the Use of Metabolomics Approach for the Diagnostic of Sharka Disease. Metabolites, 2021, 11, 465.	2.9	8
35	Growth abilities and phenotype stability of a sulcotrione-degrading Pseudomonas sp. isolated from soil. International Biodeterioration and Biodegradation, 2014, 91, 104-110.	3.9	7
36	Electrospray ionization and heterogeneous matrix effects in liquid chromatography/mass spectrometry based metaâ€metabolomics: A biomarker or a suppressed ion?. Rapid Communications in Mass Spectrometry, 2021, 35, e8977.	1,5	7

CEDRIC BERTRAND

#	Article	IF	CITATIONS
37	Plant metabolomics to the benefit of crop protection and growth stimulation. Advances in Botanical Research, 2021, , 107-132.	1.1	7
38	Microbial communities of urban stormwater sediments: the phylogenetic structure of bacterial communities varies with porosity. FEMS Microbiology Ecology, 2012, 81, 324-338.	2.7	6
39	Chemical diversity of wild populations of <i>Elionurus muticus</i> (Spreng.) and the allelopathic effect of its essential oil. Journal of Essential Oil Research, 2017, 29, 499-506.	2.7	6
40	Photodegradation of Myrigalone A, an Allelochemical from <i>Myrica gale</i> : Photoproducts and Effect of Terpenes. Journal of Agricultural and Food Chemistry, 2019, 67, 7258-7265.	5.2	5
41	<i>>Velamo do Campo</i> : Its Volatile Constituents, Secretory Elements, and Biological Activity. Journal of Medicinal Food, 2012, 15, 671-676.	1.5	4
42	Untargeted metabolomics as a tool to monitor biocontrol product residues' fate on field-treated Prunus persica. Science of the Total Environment, 2022, 807, 150717.	8.0	4
43	Evidence for photolytic and microbial degradation processes in the dissipation of leptospermone, a natural β-triketone herbicide. Environmental Science and Pollution Research, 2018, 25, 29848-29859.	5.3	3
44	Chemistry, activity, and impact of plant biocontrol products. Environmental Science and Pollution Research, 2018, 25, 29773-29774.	5.3	2