Zhihong Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2222091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology, 2010, 5, 15-25.	31.5	1,449
2	Patterning surfaces with functional polymers. Nature Materials, 2008, 7, 277-290.	27.5	841
3	Electrochemical sensing in paper-based microfluidic devices. Lab on A Chip, 2010, 10, 477-483.	6.0	837
4	Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nature Materials, 2007, 6, 609-614.	27.5	746
5	Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition. Angewandte Chemie - International Edition, 2005, 44, 724-728.	13.8	700
6	Janus and Ternary Particles Generated by Microfluidic Synthesis:Â Design, Synthesis, and Self-Assembly. Journal of the American Chemical Society, 2006, 128, 9408-9412.	13.7	692
7	Photosensitizer-Loaded Gold Vesicles with Strong Plasmonic Coupling Effect for Imaging-Guided Photothermal/Photodynamic Therapy. ACS Nano, 2013, 7, 5320-5329.	14.6	603
8	Biodegradable Gold Nanovesicles with an Ultrastrong Plasmonic Coupling Effect for Photoacoustic Imaging and Photothermal Therapy. Angewandte Chemie - International Edition, 2013, 52, 13958-13964.	13.8	577
9	Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nature Communications, 2013, 4, 1586.	12.8	518
10	Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors. Journal of the American Chemical Society, 2005, 127, 8058-8063.	13.7	503
11	Step-Growth Polymerization of Inorganic Nanoparticles. Science, 2010, 329, 197-200.	12.6	475
12	Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab on A Chip, 2010, 10, 3163.	6.0	452
13	Microfluidic Production of Biopolymer Microcapsules with Controlled Morphology. Journal of the American Chemical Society, 2006, 128, 12205-12210.	13.7	335
14	Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Materials Horizons, 2019, 6, 326-333.	12.2	327
15	Programmable diagnostic devices made from paper and tape. Lab on A Chip, 2010, 10, 2499.	6.0	320
16	Multiple Shape Transformations of Composite Hydrogel Sheets. Journal of the American Chemical Society, 2013, 135, 4834-4839.	13.7	302
17	Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 2008, 5, 585-594.	2.2	299
18	Self-Assembly of Inorganic Nanoparticle Vesicles and Tubules Driven by Tethered Linear Block Copolymers. Journal of the American Chemical Society, 2012, 134, 11342-11345.	13.7	286

Zhihong Nie

#	Article	IF	CITATIONS
19	Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis, 2012, 4, 1509-1525.	1.5	268
20	Self-Assembly of Amphiphilic Plasmonic Micelle-Like Nanoparticles in Selective Solvents. Journal of the American Chemical Society, 2013, 135, 7974-7984.	13.7	251
21	Continuous Microfluidic Reactors for Polymer Particles. Langmuir, 2005, 21, 11614-11622.	3.5	244
22	Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polymer Chemistry, 2013, 4, 4601.	3.9	242
23	Microfluidic consecutive flow-focusing droplet generators. Soft Matter, 2007, 3, 986.	2.7	230
24	"Supramolecular―Assembly of Gold Nanorods End-Terminated with Polymer "Pom-Poms   Effect of Pom-Pom Structure on the Association Modes. Journal of the American Chemical Society, 2008, 130, 3683-3689.	13.7	213
25	Polymer-guided assembly of inorganic nanoparticles. Chemical Society Reviews, 2020, 49, 465-508.	38.1	196
26	Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation. Nano Letters, 2012, 12, 4060-4064.	9.1	186
27	Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Science Advances, 2019, 5, eaav7174.	10.3	184
28	From nature to synthetic systems: shape transformation in soft materials. Journal of Materials Chemistry B, 2014, 2, 2357-2368.	5.8	175
29	pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale, 2014, 6, 11904-11910.	5.6	171
30	Folding Up of Gold Nanoparticle Strings into Plasmonic Vesicles for Enhanced Photoacoustic Imaging. Angewandte Chemie - International Edition, 2015, 54, 15809-15812.	13.8	161
31	Paper-Based Analytical Device for Electrochemical Flow-Injection Analysis of Glucose in Urine. Analytical Chemistry, 2012, 84, 4147-4152.	6.5	153
32	An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers. ACS Nano, 2017, 11, 2052-2059.	14.6	150
33	Self-limiting directional nanoparticle bonding governed by reaction stoichiometry. Science, 2020, 369, 1369-1374.	12.6	139
34	Cooperative Assembly of Magneto-Nanovesicles with Tunable Wall Thickness and Permeability for MRI-Guided Drug Delivery. Journal of the American Chemical Society, 2018, 140, 4666-4677.	13.7	138
35	Glutathione-Responsive Self-Assembled Magnetic Gold Nanowreath for Enhanced Tumor Imaging and Imaging-Guided Photothermal Therapy. ACS Nano, 2018, 12, 8129-8137.	14.6	131
36	Entropy-Driven Pattern Formation of Hybrid Vesicular Assemblies Made from Molecular and Nanoparticle Amphiphiles. Journal of the American Chemical Society, 2014, 136, 2602-2610.	13.7	126

#	Article	IF	CITATIONS
37	Evolution of Selfâ€Assembled Structures of Polymerâ€Terminated Gold Nanorods in Selective Solvents. Advanced Materials, 2008, 20, 4318-4322.	21.0	124
38	Hydrodynamically Driven Selfâ€Assembly of Giant Vesicles of Metal Nanoparticles for Remoteâ€Controlled Release. Angewandte Chemie - International Edition, 2013, 52, 2463-2468.	13.8	118
39	Suppressing Nanoparticle-Mononuclear Phagocyte System Interactions of Two-Dimensional Gold Nanorings for Improved Tumor Accumulation and Photothermal Ablation of Tumors. ACS Nano, 2017, 11, 10539-10548.	14.6	117
40	Close-Packed Superlattices of Side-by-Side Assembled Au-CdSe Nanorods. Nano Letters, 2009, 9, 3077-3081.	9.1	115
41	Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light. Advanced Materials, 2014, 26, 5613-5618.	21.0	112
42	Anisotropic Self-Assembly of Hairy Inorganic Nanoparticles. Accounts of Chemical Research, 2017, 50, 12-21.	15.6	111
43	An "Inside-Out―Microfluidic Approach to Monodisperse Emulsions Stabilized by Solid Particles. Journal of the American Chemical Society, 2008, 130, 16508-16509.	13.7	109
44	Magnetoâ€Plasmonic Janus Vesicles for Magnetic Fieldâ€Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors. Angewandte Chemie - International Edition, 2016, 55, 15297-15300.	13.8	102
45	Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics. ACS Applied Materials & Interfaces, 2015, 7, 19709-19717.	8.0	98
46	Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter, 2008, 4, 258-262.	2.7	93
47	Enzyme-induced in vivo assembly of gold nanoparticles for imaging-guided synergistic chemo-photothermal therapy of tumor. Biomaterials, 2019, 223, 119460.	11.4	90
48	A Microfluidic Approach to Chemically Driven Assembly of Colloidal Particles at Gas–Liquid Interfaces. Angewandte Chemie - International Edition, 2009, 48, 5300-5304.	13.8	83
49	Transformable Honeycombâ€Like Nanoassemblies of Carbon Dots for Regulated Multisite Delivery and Enhanced Antitumor Chemoimmunotherapy. Angewandte Chemie - International Edition, 2021, 60, 6581-6592.	13.8	82
50	Microfluidics:Â From Dynamic Lattices to Periodic Arrays of Polymer Disks. Langmuir, 2005, 21, 4773-4775.	3.5	81
51	Ordering of Gold Nanorods in Confined Spaces by Directed Assembly. Macromolecules, 2013, 46, 2241-2248.	4.8	81
52	Continuous Microfluidic Selfâ€Assembly of Hybrid Janus‣ike Vesicular Motors: Autonomous Propulsion and Controlled Release. Small, 2015, 11, 3762-3767.	10.0	80
53	Screening of the Effect of Surface Energy of Microchannels on Microfluidic Emulsification. Langmuir, 2007, 23, 8010-8014.	3.5	78
54	Multi-Step Microfluidic Polymerization Reactions Conducted in Droplets: The Internal Trigger Approach. Journal of the American Chemical Society, 2008, 130, 9935-9941.	13.7	77

#	Article	IF	CITATIONS
55	Continuous Synthesis of Copolymer Particles in Microfluidic Reactors. Macromolecules, 2005, 38, 4536-4538.	4.8	72
56	Micro- and Nanopatterning of Inorganic and Polymeric Substrates by Indentation Lithography. Nano Letters, 2010, 10, 2702-2708.	9.1	72
57	A General Approach to Synthesize Asymmetric Hybrid Nanoparticles by Interfacial Reactions. Journal of the American Chemical Society, 2012, 134, 3639-3642.	13.7	72
58	Catalytic Propulsion and Magnetic Steering of Soft, Patchy Microcapsules: Ability to Pick-Up and Drop-Off Microscale Cargo. ACS Applied Materials & Interfaces, 2016, 8, 15676-15683.	8.0	69
59	Polymers and inorganic nanoparticles: A winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Today, 2021, 36, 101046.	11.9	66
60	Hybrid hydrogel sheets that undergo pre-programmed shape transformations. Soft Matter, 2014, 10, 8157-8162.	2.7	65
61	<i>In Situ</i> Plasmonic Counter for Polymerization of Chains of Gold Nanorods in Solution. ACS Nano, 2013, 7, 5901-5910.	14.6	63
62	Concurrent self-assembly of amphiphiles into nanoarchitectures with increasing complexity. Nano Today, 2015, 10, 278-300.	11.9	62
63	Alternating Copolymerization of Inorganic Nanoparticles. Journal of the American Chemical Society, 2019, 141, 7917-7925.	13.7	62
64	A Simple Route To Improve Inorganic Nanoparticles Loading Efficiency in Block Copolymer Micelles. Macromolecules, 2013, 46, 2282-2291.	4.8	61
65	Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Materials Horizons, 2019, 6, 846-870.	12.2	61
66	Microfluidic Synthesis of Macroporous Copolymer Particles. Macromolecules, 2008, 41, 3555-3561.	4.8	58
67	Photoacoustic and Colorimetric Visualization of Latent Fingerprints. ACS Nano, 2015, 9, 12344-12348.	14.6	58
68	Symmetry-Breaking Synthesis of Multicomponent Nanoparticles. Accounts of Chemical Research, 2019, 52, 1125-1133.	15.6	58
69	Near-infrared light-responsive vesicles of Au nanoflowers. Chemical Communications, 2013, 49, 576-578.	4.1	57
70	Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. Advanced Materials, 2022, 34, e2107434.	21.0	57
71	Enzyme-Triggered Folding of Hydrogels: Toward a Mimic of the Venus Flytrap. ACS Applied Materials & Interfaces, 2016, 8, 19066-19074.	8.0	56
72	Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition. Angewandte Chemie - International Edition, 2005, 44, 3799-3799.	13.8	55

#	Article	IF	CITATIONS
73	DNA–inorganic hybrid nanovaccine for cancer immunotherapy. Nanoscale, 2016, 8, 6684-6692.	5.6	54
74	Vesicular Self-Assembly of Colloidal Amphiphiles in Microfluidics. ACS Applied Materials & Interfaces, 2013, 5, 9746-9751.	8.0	51
75	Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications. Nanoscale, 2013, 5, 5151.	5.6	50
76	One-pot facile synthesis of Janus particles with tailored shape and functionality. Chemical Communications, 2011, 47, 12450.	4.1	49
77	Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching. Journal of the American Chemical Society, 2016, 138, 6332-6335.	13.7	49
78	Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Research, 2014, 7, 1719-1730.	10.4	47
79	Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. Nanoscale, 2020, 12, 7433-7460.	5.6	47
80	Wet hemical Synthesis of Amphiphilic Rodlike Silica Particles and their Molecular Mimetic Assembly in Selective Solvents. Angewandte Chemie - International Edition, 2012, 51, 3628-3633.	13.8	45
81	Selfâ€Assembly of Amphiphilic Block Copolymerâ€Tethered Nanoparticles: a New Approach to Nanoscale Design of Functional Materials. Macromolecular Rapid Communications, 2015, 36, 711-725.	3.9	44
82	Self-accelerating H ₂ O ₂ -responsive Plasmonic Nanovesicles for Synergistic Chemo/starving therapy of Tumors. Theranostics, 2020, 10, 8691-8704.	10.0	43
83	Construction of multifunctional photonic crystal microcapsules with tunable shell structures by combining microfluidic and controlled photopolymerization. Lab on A Chip, 2012, 12, 2795.	6.0	40
84	Engineering Gold Nanoparticles in Compass Shape with Broadly Tunable Plasmon Resonances and High-Performance SERS. ACS Applied Materials & Interfaces, 2016, 8, 27949-27955.	8.0	39
85	A microfluidic route to small CO ₂ microbubbles with narrow size distribution. Soft Matter, 2010, 6, 630-634.	2.7	38
86	Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities. Dental Materials, 2018, 34, 1310-1322.	3.5	35
87	Block-Random Copolymer-Micellization-Mediated Formation of Polymeric Patches on Gold Nanoparticles. Journal of the American Chemical Society, 2021, 143, 5060-5070.	13.7	34
88	Collapsed polymer-directed synthesis of multicomponent coaxial-like nanostructures. Nature Communications, 2016, 7, 12147.	12.8	32
89	Synthesis and Liquid-Crystal Behavior of Bent Colloidal Silica Rods. Journal of the American Chemical Society, 2016, 138, 68-71.	13.7	32
90	Microfluidic Device Directly Fabricated on Screen-Printed Electrodes for Ultrasensitive Electrochemical Sensing of PSA. Nanoscale Research Letters, 2019, 14, 71.	5.7	31

#	Article	IF	CITATIONS
91	Phase behaviors of colloidal analogs of bent-core liquid crystals. Science Advances, 2018, 4, eaas8829.	10.3	30
92	General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles. Advanced Materials, 2021, 33, e2100820.	21.0	30
93	Temperature-controlled â€ ⁻ breathing' of carbon dioxide bubbles. Lab on A Chip, 2011, 11, 3545.	6.0	29
94	Facile synthesis of functional Au nanopatches and nanocups. Chemical Communications, 2012, 48, 7344.	4.1	29
95	Ultrasound assisted interfacial synthesis of gold nanocones. Chemical Communications, 2013, 49, 987-989.	4.1	29
96	Macroscopic Assembly of Gold Nanorods into Superstructures with Controllable Orientations by Anisotropic Affinity Interaction. Langmuir, 2017, 33, 13867-13873.	3.5	29
97	Engineering heterogeneity of precision nanoparticles for biomedical delivery and therapy. View, 2021, 2, 20200067.	5.3	29
98	Self-Assembly of Shaped Nanoparticles into Free-Standing 2D and 3D Superlattices. Small, 2016, 12, 499-505.	10.0	28
99	Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of Î ² -amyloid aggregates. Chemical Communications, 2017, 53, 2102-2105.	4.1	27
100	Shape Complementarity Modulated Self-Assembly of Nanoring and Nanosphere Hetero-nanostructures. Journal of the American Chemical Society, 2020, 142, 11680-11684.	13.7	26
101	Laserâ€5canningâ€Guided Assembly of Quasiâ€3D Patterned Arrays of Plasmonic Dimers for Information Encryption. Advanced Materials, 2021, 33, e2100325.	21.0	26
102	Controllable self-assembled plasmonic vesicle-based three-dimensional SERS platform for picomolar detection of hydrophobic contaminants. Nanoscale, 2018, 10, 13202-13211.	5.6	25
103	Polymeric Ligand-Mediated Regioselective Bonding of Plasmonic Nanoplates and Nanospheres. Journal of the American Chemical Society, 2020, 142, 17282-17286.	13.7	25
104	What is next in polymer-grafted plasmonic nanoparticles?. Giant, 2020, 4, 100033.	5.1	25
105	Reprogrammable ultra-fast shape-transformation of macroporous composite hydrogel sheets. Journal of Materials Chemistry B, 2017, 5, 2883-2887.	5.8	23
106	Polymer-Tethered Nanoparticles: From Surface Engineering to Directional Self-Assembly. Accounts of Chemical Research, 2022, 55, 1503-1513.	15.6	23
107	Nanomagnetic-mediated drug delivery for the treatment of dental disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 919-927.	3.3	21
108	Synthesis and assembly of colloidal cuboids with tunable shape biaxiality. Nature Communications, 2018, 9, 4513.	12.8	21

#	Article	IF	CITATIONS
109	Giant soft-memory in liquid crystal nanocomposites. Applied Physics Letters, 2016, 108, .	3.3	20
110	Colloidal stability of nanoparticles stabilized with mixed ligands in solvents with varying polarity. Chemical Communications, 2020, 56, 8131-8134.	4.1	20
111	"Twoâ€ S tep―Raman Imaging Technique To Guide Chemoâ€Photothermal Cancer Therapy. Chemistry - A European Journal, 2015, 21, 17274-17281.	3.3	19
112	Programming the Shape Transformation of a Composite Hydrogel Sheet via Erasable and Rewritable Nanoparticle Patterns. ACS Applied Materials & Interfaces, 2019, 11, 42654-42660.	8.0	19
113	Conformational Study on Thin Films of Symmetric AnB2nAn Triblock Copolymer. Macromolecular Theory and Simulations, 2005, 14, 463-473.	1.4	18
114	Immobilized Seed-Mediated Growth of Two-Dimensional Array of Metallic Nanocrystals with Asymmetric Shapes. ACS Nano, 2018, 12, 1107-1119.	14.6	18
115	Melamine promotes calcium crystal formation in three-dimensional microfluidic device. Scientific Reports, 2019, 9, 875.	3.3	18
116	A welding phenomenon of dissimilar nanoparticles in dispersion. Nature Communications, 2019, 10, 219.	12.8	18
117	Accounting for inhomogeneous broadening in nano-optics by electromagnetic modeling based on Monte Carlo methods. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E639-E644.	7.1	17
118	Synthesis of circular and triangular gold nanorings with tunable optical properties. Chemical Communications, 2017, 53, 10765-10767.	4.1	17
119	Nature-Inspired Sequential Shape Transformation of Energy-Patterned Hydrogel Sheets. ACS Applied Materials & Interfaces, 2020, 12, 4878-4886.	8.0	16
120	Temperature mediated generation of armoured bubbles. Chemical Communications, 2011, 47, 12712.	4.1	15
121	Formation of hybrid core–shell microgels induced by autonomous unidirectional migration of nanoparticles. Materials Horizons, 2016, 3, 78-82.	12.2	14
122	A shape-shifting composite hydrogel sheet with spatially patterned plasmonic nanoparticles. Journal of Materials Chemistry B, 2019, 7, 1679-1683.	5.8	13
123	Magnetoâ€Plasmonic Janus Vesicles for Magnetic Fieldâ€Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors. Angewandte Chemie, 2016, 128, 15523-15526.	2.0	12
124	Precisely Defining Local Gradients of Stimuliâ€Responsive Hydrogels for Complex 2Dâ€ŧoâ€4D Shape Evolutions. Small, 2022, 18, e2104440.	10.0	12
125	Light-Mediated Shape Transformation of a Self-Rolling Nanocomposite Hydrogel Tube. ACS Applied Materials & amp; Interfaces, 2020, 12, 13521-13528.	8.0	11
126	Single Copolymer Chainâ€Templated Synthesis of Ultrasmall Symmetric and Asymmetric Silicaâ€Based Nanoparticles. Advanced Functional Materials, 2022, 32, .	14.9	10

#	Article	IF	CITATIONS
127	Centimeter-Scale Superlattices of Three-Dimensionally Orientated Plasmonic Dimers with Highly Tunable Collective Properties. ACS Nano, 2022, 16, 4609-4618.	14.6	10
128	Fluorescent microsphere probe for rapid qualitative and quantitative detection of trypsin activity. Nanoscale Advances, 2019, 1, 162-167.	4.6	9
129	Entropy-driven segregation and budding in hybrid vesicles of binary nanoparticle amphiphiles. Giant, 2020, 1, 100010.	5.1	8
130	Transformable Honeycombâ€Like Nanoassemblies of Carbon Dots for Regulated Multisite Delivery and Enhanced Antitumor Chemoimmunotherapy. Angewandte Chemie, 2021, 133, 6655-6666.	2.0	7
131	Plasmon spectra in two-dimensional nanorod arrays. Nanotechnology, 2009, 20, 295203.	2.6	6
132	New-phase retention in colloidal core/shell nanocrystals <i>via</i> pressure-modulated phase engineering. Chemical Science, 2021, 12, 6580-6587.	7.4	6
133	Light-triggered generation of multifunctional gas-filled capsules on-demand. Journal of Materials Chemistry C, 2016, 4, 652-658.	5.5	5
134	Ionic diode-based self-powered ionic skins with multiple sensory capabilities. Materials Today Physics, 2022, 26, 100744.	6.0	5
135	Interfacial phenomena in (de)hydrogenation reactions. Physical Chemistry Chemical Physics, 2013, 15, 11985.	2.8	4
136	Regioselective metal deposition on polymer-Au nanoparticle hybrid chains. Science China Materials, 2019, 62, 1363-1367.	6.3	3
137	Construction of 3D shapeâ€changing hydrogels via lightâ€modulated internal stress fields. Energy and Environmental Materials, 0, , .	12.8	2
138	The Endless and Turbulent Frontier of Academic Entrepreneurship. ACS Nano, 2021, 15, 16947-16952.	14.6	1
139	Electrostatic Adsorption Behaviors of Charged Polymerâ€ŧethered Nanoparticles on Oppositely Charged Surfaces. Macromolecular Rapid Communications, 2022, , 2200171.	3.9	1
140	Cover Picture: A Microfluidic Approach to Chemically Driven Assembly of Colloidal Particles at Gas-Liquid Interfaces (Angew. Chem. Int. Ed. 29/2009). Angewandte Chemie - International Edition, 2009, 48, 5219-5219.	13.8	0
141	Electrochemical Microfluidic Paper-Based Analytical Devices Using a Glucometer for Point-of-Care Detection of Multiple Analytes. ECS Meeting Abstracts, 2011, , .	0.0	0
142	Nanoparticles: Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light (Adv. Mater. 32/2014). Advanced Materials, 2014, 26, 5731-5731.	21.0	0
143	Synthesis, Self-Assembly, and Applications of Amphiphilic Janus and Triblock Janus Nanoparticle Analogs. , 2017, , 233-275.		0
144	Self-assembly of Polymer-grafted Inorganic Nanoparticles into Functional Hybrid Materials. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 87-133.	0.1	0