AscensiÃ³n Montoya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2222074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and characterization of mesoporous materials: Silica–zirconia and silica–titania. Catalysis Today, 2009, 148, 12-18.	4.4	31
2	The effect of temperature on the structural and textural evolution of sol–gel Al2O3–TiO2 mixed oxides. Journal of Materials Chemistry, 2001, 11, 944-950.	6.7	29
3	Parallel and automated library synthesis of 2-long alkyl chain benzoazoles and azole[4,5-b]pyridines under microwave irradiation. Molecular Diversity, 2005, 9, 361-369.	3.9	21
4	High-throughput study of the iron promotional effect over Pt/WOx–ZrO2 catalysts on the skeletal isomerization of n-hexane. Applied Catalysis A: General, 2012, 431-432, 69-78.	4.3	16
5	Palladium effect over Mo and NiMo/alumina–titania sulfided catalysts on the hydrodesulfurization of 4,6-dimethyldibenzothiophene. Journal of Molecular Catalysis A, 2011, 346, 12-19.	4.8	13
6	Aberration-corrected HRTEM study of Mn-doped tungstated zirconia catalysts. Catalysis Today, 2013, 212, 201-205.	4.4	9
7	Nucleation and growth of NiO nanoparticles and thin films by TEM electron irradiation. Catalysis Today, 2013, 212, 194-200.	4.4	9
8	Methane reforming with CO2 over Ni/ZrO2-CeO2 and Ni/ZrO2-MgO catalysts synthesized by sol-gel method. Studies in Surface Science and Catalysis, 2000, 130, 3669-3674.	1.5	8
9	Optimization of manganese content by high-throughput experimentation of Pt/WO –ZrO2–Mn catalysts. Catalysis Communications, 2010, 11, 408-413.	3.3	8
10	Recent progress on catalyst technologies for high quality gasoline production. Catalysis Reviews - Science and Engineering, 2023, 65, 1079-1299.	12.9	8
11	Influence of the incorporation of Fe and Mn on the nanostructure and reactivity of catalysts based on tungstated zirconia. Catalysis Today, 2021, 360, 72-77.	4.4	7
12	Alumina support modified by Zr and Ti. Synthesis and characterization. Studies in Surface Science and Catalysis, 1995, 91, 807-815.	1.5	4
13	Hydroisomerization of n-hexane over Pt/WOx-ZrO2-TiO2 catalysts. Catalysis Today, 2021, 360, 12-19.	4.4	4
14	Study by high-throughput experimentation of the effect of the pretreatment and precursors on the catalytic activity of tungstated zirconia catalysts. Catalysis Communications, 2009, 10, 1828-1834.	3.3	3
15	Role of the residual Na+ ions on the dispersion of WOx species on titania nanotubes by in situ thermo-Raman study. Catalysis Today, 2010, 155, 241-246.	4.4	3
16	Nitrogen compounds removal from oil-derived middle distillates by MIL-101(Cr) and its impact on ULSD production by hydrotreating. Oil and Gas Science and Technology, 2021, 76, 56.	1.4	3
17	Formaldehyde CWO with gold nanoparticles in a forced through flow catalytic-membrane reactor. Catalysis Today, 2020, 349, 42-47.	4.4	2