Taifo Mahmud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2221907/publications.pdf Version: 2024-02-01

		117625	123424
107	4,501	34	61
papers	citations	h-index	g-index
117	117	117	4579
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	EDB Gene Cluster-Dependent Indole Production Is Responsible for the Ability of <i>Pseudomonas fluorescens</i> NZI7 to Repel Grazing by <i>Caenorhabditis elegans</i> . Journal of Natural Products, 2022, 85, 590-598.	3.0	4
2	The chemistry and biology of natural ribomimetics and related compounds. RSC Chemical Biology, 2022, 3, 519-538.	4.1	3
3	Complete biosynthetic pathway to the antidiabetic drug acarbose. Nature Communications, 2022, 13, .	12.8	17
4	Structural revision of sesbagrandiflorains A and B, and synthesis and biological evaluation of 6-methoxy-2-arylbenzofuran derivatives. Journal of Natural Medicines, 2021, 75, 66-75.	2.3	7
5	Natural Occurrence of Hybrid Polyketides from Two Distinct Biosynthetic Pathways in Streptomyces pactum. ACS Chemical Biology, 2021, 16, 270-276.	3.4	5
6	Identification and Biological Activity of NFAT-133 Congeners from <i>Streptomyces pactum</i> . Journal of Natural Products, 2021, 84, 2411-2419.	3.0	4
7	Phomaligols F–I, polyoxygenated cyclohexenone derivatives from marine-derived fungus Aspergillus flavus BB1. Bioorganic Chemistry, 2021, 115, 105269.	4.1	4
8	Biotransformations of anthranilic acid and phthalimide to potent antihyperlipidemic alkaloids by the marine-derived fungus Scedosporium apiospermum F41-1. Bioorganic Chemistry, 2021, 116, 105375.	4.1	6
9	Modulation of Specialized Metabolite Production in Genetically Engineered Streptomyces pactum. ACS Chemical Biology, 2021, 16, 2641-2650.	3.4	2
10	Structure characterization and biological activity of 2-arylbenzofurans from an Indonesian plant, Sesbania grandiflora (L.) Pers. Phytochemistry Letters, 2020, 35, 211-215.	1.2	15
11	<scp>l</scp> -Phenylalanine Alters the Privileged Secondary Metabolite Production in the Marine-Derived Fungus <i>Trichoderma erinaceum</i> F1-1. Journal of Natural Products, 2020, 83, 79-87.	3.0	17
12	Antibacterial Potential of Secondary Metabolites from Indonesian Marine Bacterial Symbionts. International Journal of Microbiology, 2020, 2020, 1-11.	2.3	8
13	Aminocyclitols. , 2020, , 553-587.		1
14	<scp>l</scp> -Tryptophan Induces a Marine-Derived <i>Fusarium</i> sp. to Produce Indole Alkaloids with Activity against the Zika Virus. Journal of Natural Products, 2020, 83, 3372-3380.	3.0	32
15	Potential Antidiabetic Fumiquinazoline Alkaloids from the Marine-Derived Fungus <i>Scedosporium apiospermum</i> F41-1. Journal of Natural Products, 2020, 83, 1082-1091.	3.0	32
16	Biosynthesis of the Nuclear Factor of Activated T Cells Inhibitor NFAT-133 in <i>Streptomyces pactum</i> . ACS Chemical Biology, 2020, 15, 3217-3226.	3.4	14
17	Glycosylation of acyl carrier protein-bound polyketides during pactamycin biosynthesis. Nature Chemical Biology, 2019, 15, 795-802.	8.0	18
18	Interkingdom Genetic Mix-and-Match To Produce Novel Sunscreens. ACS Synthetic Biology, 2019, 8, 2464-2471	3.8	6

#	Article	IF	CITATIONS
19	3-Ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. MedChemComm, 2019, 10, 1517-1530.	3.4	37
20	The secondary metabolite pactamycin with potential for pharmaceutical applications: biosynthesis and regulation. Applied Microbiology and Biotechnology, 2019, 103, 4337-4345.	3.6	10
21	Armeniaspirol Antibiotic Biosynthesis: Chlorination and Oxidative Dechlorination Steps Affording Spiro[4.4]nonâ€8â€ene. ChemBioChem, 2019, 20, 764-769.	2.6	7
22	Asymmetric Synthesis and Biological Activities of Pactamycin-Inspired Aminocyclopentitols. Organic Letters, 2018, 20, 397-400.	4.6	11
23	Biosynthesis and metabolic engineering of pseudo-oligosaccharides. Emerging Topics in Life Sciences, 2018, 2, 405-417.	2.6	12
24	Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum. Applied Microbiology and Biotechnology, 2018, 102, 10589-10601.	3.6	13
25	A Highly Promiscuous ß-Ketoacyl-ACP Synthase (KAS) III-like Protein Is Involved in Pactamycin Biosynthesis. ACS Chemical Biology, 2017, 12, 362-366.	3.4	34
26	Evolution and Distribution of C7–Cyclitol Synthases in Prokaryotes and Eukaryotes. ACS Chemical Biology, 2017, 12, 979-988.	3.4	20
27	The sedoheptulose 7-phosphate cyclases and their emerging roles in biology and ecology. Natural Product Reports, 2017, 34, 945-956.	10.3	14
28	Interrogating the Tailoring Steps of Pactamycin Biosynthesis and Accessing New Pactamycin Analogues. ChemBioChem, 2016, 17, 1585-1588.	2.6	24
29	Total Synthesis of (±)-Isoperbergins and Correction of the Chemical Structure of Perbergin. Journal of Natural Products, 2016, 79, 2391-2396.	3.0	7
30	Eremophilane sesquiterpenes from Hawaiian endophytic fungus Chaetoconis sp. FT087. Phytochemistry, 2016, 126, 41-46.	2.9	29
31	Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells. PLoS ONE, 2015, 10, e0125322.	2.5	30
32	Distinct Substrate Specificity and Catalytic Activity of the Pseudoglycosyltransferase VldE. Chemistry and Biology, 2015, 22, 724-733.	6.0	10
33	Succinylated Apoptolidins from Amycolatopsis sp. ICBB 8242. Organic Letters, 2015, 17, 2526-2529.	4.6	12
34	Identification of Elaiophylin Skeletal Variants from the Indonesian Streptomyces sp. ICBB 9297. Journal of Natural Products, 2015, 78, 2768-2775.	3.0	29
35	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	8.0	715
36	Apoptolidins A and C activate AMPK in metabolically sensitive cell types and are mechanistically distinct from oligomycin A. Biochemical Pharmacology, 2015, 93, 251-265.	4.4	17

#	Article	IF	CITATIONS
37	De novo synthesis of a sunscreen compound in vertebrates. ELife, 2015, 4, .	6.0	71
38	Analysis of Genome Sequences from Plant Pathogenic Rhodococcus Reveals Genetic Novelties in Virulence Loci. PLoS ONE, 2014, 9, e101996.	2.5	54
39	Modification of Rifamycin Polyketide Backbone Leads to Improved Drug Activity against Rifampicin-resistant Mycobacterium tuberculosis. Journal of Biological Chemistry, 2014, 289, 21142-21152.	3.4	40
40	Structure of a Sedoheptulose 7-Phosphate Cyclase: ValA from <i>Streptomyces hygroscopicus</i> . Biochemistry, 2014, 53, 4250-4260.	2.5	14
41	Mutasynthesis of Fluorinated Pactamycin Analogues and Their Antimalarial Activity. Organic Letters, 2013, 15, 1678-1681.	4.6	38
42	Genetic Insights into Pyralomicin Biosynthesis in <i>Nonomuraea spiralis</i> IMC A-0156. Journal of Natural Products, 2013, 76, 939-946.	3.0	40
43	Comparative Metabolomic Analysis of an Alternative Biosynthetic Pathway to Pseudosugars in <i>Actinosynnema mirum</i> DSM 43827. ChemBioChem, 2013, 14, 1548-1551.	2.6	14
44	Evolutionary Divergence of Sedoheptulose 7-Phosphate Cyclases Leads to Several Distinct Cyclic Products. Journal of the American Chemical Society, 2012, 134, 12219-12229.	13.7	39
45	The αâ€Ketoglutarate/Fe ^{II} â€Dependent Dioxygenase VldW Is Responsible for the Formation of Validamycin B. ChemBioChem, 2012, 13, 2209-2211.	2.6	7
46	Transcriptional regulation and increased production of asukamycin in engineered Streptomyces nodosus subsp. asukaensis strains. Applied Microbiology and Biotechnology, 2012, 96, 451-460.	3.6	18
47	Mechanistic Insights into Validoxylamine A 7'-Phosphate Synthesis by VldE Using the Structure of the Entire Product Complex. PLoS ONE, 2012, 7, e44934.	2.5	17
48	Pseudoglycosyltransferase Catalyzes Nonglycosidic C–N Coupling in Validamycin A Biosynthesis. Journal of the American Chemical Society, 2011, 133, 12124-12135.	13.7	27
49	Nucleotidylation of unsaturated carbasugar in validamycin biosynthesis. Organic and Biomolecular Chemistry, 2011, 9, 438-449.	2.8	23
50	Biosynthetic Studies and Genetic Engineering of Pactamycin Analogs with Improved Selectivity toward Malarial Parasites. Chemistry and Biology, 2011, 18, 425-431.	6.0	69
51	Modified Phenazines from an Indonesian <i>Streptomyces</i> sp Journal of Natural Products, 2010, 73, 472-475.	3.0	18
52	Shared Biosynthesis of the Saliniketals and Rifamycins in <i>Salinispora arenicola</i> is Controlled by the <i>sare1259</i> -Encoded Cytochrome P450. Journal of the American Chemical Society, 2010, 132, 12757-12765.	13.7	60
53	Biosynthetic Gene Cluster of Cetoniacytone A, an Unusual Aminocyclitol from the Endosymbiotic Bacterium <i>Actinomyces</i> sp. Lu 9419. ChemBioChem, 2009, 10, 304-314.	2.6	26
54	Deciphering Pactamycin Biosynthesis and Engineered Production of New Pactamycin Analogues. ChemBioChem, 2009, 10, 2253-2265.	2.6	77

#	Article	IF	CITATIONS
55	Genetically engineered production of 1,1′-bis-valienamine and validienamycin in Streptomyces hygroscopicus and their conversion to valienamine. Applied Microbiology and Biotechnology, 2009, 81, 895-902.	3.6	20
56	Progress in aminocyclitol biosynthesis. Current Opinion in Chemical Biology, 2009, 13, 161-170.	6.1	34
57	Alternative Epimerization in C7N-Aminocyclitol Biosynthesis Is Catalyzed by ValD, A Large Protein of the Vicinal Oxygen Chelate Superfamily. Chemistry and Biology, 2009, 16, 567-576.	6.0	25
58	Limazepines Aâ^'F, Pyrrolo[1,4]benzodiazepine Antibiotics from an Indonesian <i>Micrococcus</i> sp Journal of Natural Products, 2009, 72, 690-695.	3.0	37
59	Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5-epi-valiolone synthase gene in Streptomyces albus ATCC 21838. Applied Microbiology and Biotechnology, 2008, 80, 637-645.	3.6	21
60	Rearranged and Unrearranged Angucyclinones from Indonesian Streptomyces spp Journal of Antibiotics, 2008, 61, 449-456.	2.0	26
61	Angucyclinones from an Indonesian <i>Streptomyces</i> sp Journal of Natural Products, 2008, 71, 61-65.	3.0	29
62	Catalytic Analysis of the Validamycin Glycosyltransferase (ValG) and Enzymatic Production of 4′′-epi-Validamycin A. Journal of Natural Products, 2008, 71, 1233-1236.	3.0	20
63	Biosynthesis of Unusual Aminocyclitol-Containing Natural Products. Journal of Natural Products, 2007, 70, 1384-1391.	3.0	37
64	Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Natural Product Reports, 2007, 24, 358-392.	10.3	120
65	A Comparative Analysis of the Sugar Phosphate Cyclase Superfamily Involved in Primary and Secondary Metabolism. ChemBioChem, 2007, 8, 239-248.	2.6	41
66	ValC, a New Type of C7-Cyclitol Kinase Involved in the Biosynthesis of the Antifungal Agent Validamycin A. ChemBioChem, 2007, 8, 632-641.	2.6	33
67	Mutasynthesisâ€Derived Myxalamids and Origin of the Isobutyrylâ€CoA Starter Unit of Myxalamid B. ChemBioChem, 2007, 8, 2139-2144.	2.6	33
68	lsotope tracer investigations of natural products biosynthesis: the discovery of novel metabolic pathways. Journal of Labelled Compounds and Radiopharmaceuticals, 2007, 50, 1039-1051.	1.0	14
69	Complete genome sequence of the myxobacterium Sorangium cellulosum. Nature Biotechnology, 2007, 25, 1281-1289.	17.5	354
70	Functional Analysis of the Validamycin Biosynthetic Gene Cluster and Engineered Production of Validoxylamine A. Chemistry and Biology, 2006, 13, 387-397.	6.0	92
71	A Unique Mechanism for Methyl Ester Formation via an Amide Intermediate Found in Myxobacteria. ChemBioChem, 2006, 7, 1197-1205.	2.6	13
72	Nonribosomal Peptide Biosynthesis: Point Mutations and Module Skipping Lead to Chemical Diversity. Angewandte Chemie - International Edition, 2006, 45, 2296-2301.	13.8	96

#	Article	IF	CITATIONS
73	A Biosynthetic Pathway to Isovaleryl-CoA in Myxobacteria: The Involvement of the Mevalonate Pathway. ChemBioChem, 2005, 6, 322-330.	2.6	35
74	A Homologue of the Mycobacterium tuberculosis PapA5 Protein, Rif-Orf20, Is an Acetyltransferase Involved in the Biosynthesis of Antitubercular Drug Rifamycin B by Amycolatopsis mediterranei S699. ChemBioChem, 2005, 6, 834-837.	2.6	15
75	Gene Cluster Responsible for Validamycin Biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Applied and Environmental Microbiology, 2005, 71, 5066-5076.	3.1	70
76	Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699. Microbiology (United Kingdom), 2005, 151, 2515-2528.	1.8	62
77	A Novel Type of Geosmin Biosynthesis in Myxobacteria. Journal of Organic Chemistry, 2005, 70, 5174-5182.	3.2	118
78	The C7N Aminocyclitol Family of Natural Products. ChemInform, 2003, 34, no.	0.0	0
79	Melithiazol Biosynthesis. Chemistry and Biology, 2003, 10, 939-952.	6.0	82
80	Markerless Mutations in the Myxothiazol Biosynthetic Gene Cluster. Chemistry and Biology, 2003, 10, 953-960.	6.0	20
81	Biosynthetic studies on the α-glucosidase inhibitor acarbose: the chemical synthesis of isotopically labeled 2-epi-5-epi-valiolone analogs. Carbohydrate Research, 2003, 338, 2075-2082.	2.3	15
82	Occurrence and non-detectability of maytansinoids in individual plants of the genera Maytenus and Putterlickia. Phytochemistry, 2003, 62, 377-387.	2.9	41
83	Isolation and characterization of 27-O-demethylrifamycin SV methyltransferase provides new insights into the post-PKS modification steps during the biosynthesis of the antitubercular drug rifamycin B by Amycolatopsis mediterranei S699. Archives of Biochemistry and Biophysics, 2003, 411, 277-288.	3.0	26
84	The C7N aminocyclitol family of natural products. Natural Product Reports, 2003, 20, 137-166.	10.3	153
85	A Novel Biosynthetic Pathway Providing Precursors for Fatty Acid Biosynthesis and Secondary Metabolite Formation in Myxobacteria. Journal of Biological Chemistry, 2002, 277, 32768-32774.	3.4	56
86	Biosynthesis of the Cyclitol Moiety of Pyralomicin la in Nonomuraea spiralis MI178-34F18 Journal of Antibiotics, 2002, 55, 578-584.	2.0	23
87	Identification of Asm19 as an Acyltransferase Attaching the Biologically Essential Ester Side Chain of Ansamitocins UsingN-Desmethyl-4,5-desepoxymaytansinol, Not Maytansinol, as Its Substrate. Journal of the American Chemical Society, 2002, 124, 6544-6545.	13.7	45
88	Characterization of the Early Stage Aminoshikimate Pathway in the Formation of 3-Amino-5-hydroxybenzoic Acid:  The RifN Protein Specifically Converts Kanosamine into Kanosamine 6-Phosphate. Journal of the American Chemical Society, 2002, 124, 10644-10645.	13.7	44
89	Biosynthetic studies on the α-glucosidase inhibitor acarbose: the chemical synthesis of dTDP-4-amino-4,6-dideoxy-α-d-glucose. Carbohydrate Research, 2002, 337, 297-304.	2.3	26
90	Biosynthesis of the Validamycins:Â Identification of Intermediates in the Biosynthesis of Validamycin A byStreptomyceshygroscopicusvar.limoneus. Journal of the American Chemical Society, 2001, 123, 2733-2742.	13.7	51

#	Article	IF	CITATIONS
91	Synthesis of 5-epi-[6-2H2]Valiolone and Stereospecifically Monodeuterated 5-epi-Valiolones:Â Exploring the Steric Course of 5-epi-Valiolone Dehydratase in Validamycin A Biosynthesis. Journal of Organic Chemistry, 2001, 66, 5066-5073.	3.2	21
92	The biosynthesis of acarbose and validamycin. Chemical Record, 2001, 1, 300-310.	5.8	34
93	The AcbC Protein from Actinoplanes Species Is a C7-cyclitol Synthase Related to 3-Dehydroquinate Synthases and Is Involved in the Biosynthesis of the α-Glucosidase Inhibitor Acarbose. Journal of Biological Chemistry, 1999, 274, 10889-10896.	3.4	68
94	Biosynthetic Studies on the α-Glucosidase Inhibitor Acarbose inActinoplanessp.: 2-epi-5-epi-Valiolone Is the Direct Precursor of the Valienamine Moiety. Journal of the American Chemical Society, 1999, 121, 6973-6983.	13.7	61
95	Anti-malarial activities of acylated bruceolide derivatives. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 459-462.	2.2	16
96	Indonesian Medicinal Plants. XXI. Inhibitors of Na+/H+ Exchanger from the Bark of Erythrina variegata and the Roots of Maclura cochinchinensis Chemical and Pharmaceutical Bulletin, 1997, 45, 1615-1619.	1.3	40
97	The absolute stereostructures of the polyacetylenic constituents of Ginseng Radix Rubra. Tetrahedron, 1997, 53, 15691-15700.	1.9	34
98	Novel Violet Pigment, Nostocine A, an Extracellular Metabolite from Cyanobacterium Nostoc spongiaeforme. Heterocycles, 1996, 43, 1513.	0.7	54
99	Indonesian Medicinal Plants. XIII. Chemical Structures of Caesaldekarins c, d, and e, Three Additional Cassane-Type Furanoditerpenes from the Roots of Caesalpinia major(Fabaceae). Several Interesting Reaction Products of Caesaldekarin a Provided by N-Bromosuccinimide Treatment Chemical and Pharmaceutical Bulletin. 1996. 44. 1157-1161.	1.3	27
100	Indonesian Medicinal Plants. XIV. Characterization of 3'-O-Caffeoylsweroside, a New Secoiridoid Glucoside, and Kelampayosides A and B, Two New Phenolic Apioglucosides, from the Bark of Anthocephalus chinensis(Rubiaceae) Chemical and Pharmaceutical Bulletin, 1996, 44, 1162-1167.	1.3	50
101	Indonesian Medicinal Plants. XVII. Characterization of Quassinoids from the Stems of Quassia indica Chemical and Pharmaceutical Bulletin, 1996, 44, 2009-2014.	1.3	41
102	Indonesian Medicinal Plants. XVIII. Kompasinol A, a New Stilbeno-Phenylpropanoid from the Bark of Koompassia malaccensis (Fabaceae) Chemical and Pharmaceutical Bulletin, 1996, 44, 2249-2253.	1.3	21
103	Marine Natural Products. XXXVI. Biologically Active Polyacetylenes, Adociacetylenes A, B, C, and D, from an Okinawan Marine Sponge of Adocia sp Chemical and Pharmaceutical Bulletin, 1996, 44, 720-724.	1.3	35
104	The Absolute Stereostructure of Panaxytriol,a Biologically Active Diacetylenic Acetogenin, from Ginseng Radix Rubra Chemical and Pharmaceutical Bulletin, 1995, 43, 1595-1597.	1.3	13
105	TAXOL AND ITS RELATED TAXOIDS FROM THE NEEDLES OF TAXUS SUMATRANA. Chemical and Pharmaceutical Bulletin, 1995, 43, 365-367.	1.3	16
106	Indonesian Medicinal Plants. VII. Seven New Clerodane-Type Diterpenoids, Peronemins A ₂ , A ₃ , B ₁ , B ₂ , B ₃ , C ₁ , and D ₁ , from the Leaves of Peronema canescens (Verbenaceae). Chemical and	1.3	23
107	Pharmaceurical Bullet M. 1994, 42, 1050-1055 Indonesian Medicinal Plants. VIII. Chemical Structures of Three New Triterpenoids, Bruceajavanin A, Dihydrobruceajavanin A, and Bruceajavanin B, and a New Alkaloidal Clycoside, Bruceacanthinoside, from the Stems of Brucea javanica (Simaroubaceae) Chemical and Pharmaceutical Bulletin, 1994, 42, 1416-1421.	1.3	47