Bob Argiropoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2221613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hi-C detects genomic structural variants in peripheral blood of pediatric leukemia patients. Journal of Physical Education and Sports Management, 2022, 8, a006157.	1.2	7
2	Overcoming bioprocess bottlenecks in the large-scale expansion of high-quality hiPSC aggregates in vertical-wheel stirred suspension bioreactors. Stem Cell Research and Therapy, 2021, 12, 55.	5.5	42
3	Very Low Vitamin D in a Patient With a Novel Pathogenic Variant in the <i>GC</i> Gene That Encodes Vitamin D-Binding Protein. Journal of the Endocrine Society, 2021, 5, bvab104.	0.2	10
4	8p23.2p22 deletion: a case report of a large deletion encompassing 8p23.1 with additional clinical features. Clinical Dysmorphology, 2020, 29, 207-209.	0.3	1
5	Optimized serial expansion of human induced pluripotent stem cells using low-density inoculation to generate clinically relevant quantities in vertical-wheel bioreactors. Stem Cells Translational Medicine, 2020, 9, 1036-1052.	3.3	40
6	An ACSL4 Hemizygous Intragenic Deletion in a Patient With Childhood Stroke. Pediatric Neurology, 2019, 100, 100-101.	2.1	1
7	Authors' Response: Prenatal Ultrasound Presentations in Late Pregnancies Affected With Alpha Thalassemia Major. Pediatric and Developmental Pathology, 2019, 22, 605-605.	1.0	0
8	Vitamin D–Binding Protein Deficiency and Homozygous Deletion of the <i>GC</i> Gene. New England Journal of Medicine, 2019, 380, 1150-1157.	27.0	54
9	SS-31 Peptide Reverses the Mitochondrial Fragmentation Present in Fibroblasts From Patients With DCMA, a Mitochondrial Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2019, 6, 167.	2.4	24
10	Atypical Prenatal Ultrasound Presentation and Neuropathological Findings in a Neonate With Alpha Thalassemia Major: A Case Report. Pediatric and Developmental Pathology, 2019, 22, 166-170.	1.0	3
11	Two De Novo Mutations in an Autistic Child Who Had Previously Undergone Transplantation for Dilated Cardiomyopathy: The Importance of Keeping an Open Mind. Canadian Journal of Cardiology, 2017, 33, 292.e5-292.e7.	1.7	1
12	Genotype–phenotype characterization in 13 individuals with chromosome Xp11.22 duplications. American Journal of Medical Genetics, Part A, 2016, 170, 967-977.	1.2	11
13	Prenatal Array Comparative Genomic Hybridization in Fetuses With Structural Cardiac Anomalies. Journal of Obstetrics and Gynaecology Canada, 2016, 38, 619-626.	0.7	14
14	Molecular analysis distinguishes metastatic disease from second cancers in patients with retinoblastoma. Cancer Genetics, 2016, 209, 359-363.	0.4	9
15	MicroRNA-223 dose levels fine tune proliferation and differentiation in human cord blood progenitors and acute myeloid leukemia. Experimental Hematology, 2015, 43, 858-868.e7.	0.4	28
16	DYRK1A haploinsufficiency causes a new recognizable syndrome with microcephaly, intellectual disability, speech impairment, and distinct facies. European Journal of Human Genetics, 2015, 23, 1473-1481.	2.8	101
17	Five patients with a chromosome 1q21.1 triplication show macrocephaly, increased weight and facial similarities. European Journal of Medical Genetics, 2015, 58, 503-508.	1.3	15
18	Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Human Molecular Genetics, 2014, 23, 2752-2768.	2.9	140

BOB ARGIROPOULOS

#	Article	IF	CITATIONS
19	CHD2 haploinsufficiency is associated with developmental delay, intellectual disability, epilepsy and neurobehavioural problems. Journal of Neurodevelopmental Disorders, 2014, 6, 9.	3.1	71
20	Cell Fate Decisions in Malignant Hematopoiesis: Leukemia Phenotype Is Determined by Distinct Functional Domains of the MN1 Oncogene. PLoS ONE, 2014, 9, e112671.	2.5	15
21	HLA-DRnegative, CD34negative Hypergranular Acute Myeloid Leukemia With Trisomy 6 and del(5)(q22q33). Journal of Pediatric Hematology/Oncology, 2011, 33, e289-e295.	0.6	2
22	Cell of Origin in AML: Susceptibility to MN1-Induced Transformation Is Regulated by the MEIS1/AbdB-like HOX Protein Complex. Cancer Cell, 2011, 20, 39-52.	16.8	76
23	Delineating domains and functions of NUP98 contributing to the leukemogenic activity of NUP98-HOX fusions. Leukemia Research, 2011, 35, 545-550.	0.8	17
24	Linkage of the potent leukemogenic activity of Meis1 to cell-cycle entry and transcriptional regulation of cyclin D3. Blood, 2010, 115, 4071-4082.	1.4	28
25	Identification of miR-145 and miR-146a as mediators of the 5q– syndrome phenotype. Nature Medicine, 2010, 16, 49-58.	30.7	588
26	MN1 Inhibits Myeloid Differentiation by Transcriptional Repression of EGR2. Blood, 2010, 116, 229-229.	1.4	1
27	CBL Exon 8/9 Mutants Activate the FLT3 Pathway and Cluster in Core Binding Factor/11q Deletion Acute Myeloid Leukemia/Myelodysplastic Syndrome Subtypes. Clinical Cancer Research, 2009, 15, 2238-2247.	7.0	102
28	Identification of the ETS Family Member ELF1 as a Transcriptional Regulator of MEIS1 Expression Blood, 2009, 114, 3647-3647.	1.4	0
29	Linkage of Meis1 leukemogenic activity to multiple downstream effectors including Trib2 and Ccl3. Experimental Hematology, 2008, 36, 845-859.	0.4	56
30	In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Research, 2008, 18, 1787-1797.	5.5	162
31	Heterogeneity of Acute Myeloid Leukemia at the Stem Cell Level Blood, 2008, 112, 1355-1355.	1.4	0
32	Identification of Mir-145 and Mir-146a as Micrornas Involved in the Pathogenesis of 5q- Syndrome. Blood, 2008, 112, 853-853.	1.4	3
33	Unraveling the crucial roles of <i>Meis1</i> in leukemogenesis and normal hematopoiesis. Genes and Development, 2007, 21, 2845-2849.	5.9	87
34	The MN1 Oncogene Blocks Differentiation of Multiple Hematopoietic Lineages Blood, 2007, 110, 600-600.	1.4	1
35	Independent and Converging Pathways in Leukemia Stem Cells Blood, 2007, 110, 3380-3380.	1.4	0
36	Identification of Meis1 Target Genes Involved in the Induction of AML in Collaboration with NUP98-HOXD13 Blood, 2006, 108, 1404-1404.	1.4	0

#	Article	IF	CITATIONS
37	FLT3 Expression Is Increased by MEIS1 and Collaborates with NUP98-HOX Fusion Genes in the Induction of Acute Myeloid Leukemia Blood, 2004, 104, 2552-2552.	1.4	Ο
38	Low-level ectopic expression of Fushi tarazu in Drosophila melanogaster results in ftzUal/Rpl-like phenotypes and rescues ftz phenotypes. Mechanisms of Development, 2003, 120, 1443-1453.	1.7	3
39	Site-Specific Recognition of a 70-Base-Pair Element Containing d(GA) n Repeats Mediates bithoraxoid Polycomb Group Response Element-Dependent Silencing. Molecular and Cellular Biology, 2001, 21, 4528-4543.	2.3	88