Andrew L Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2221537/publications.pdf Version: 2024-02-01

ANDREW | KDALLSE

#	Article	IF	CITATIONS
1	Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains. Journal of Mathematical Analysis and Applications, 2014, 417, 1018-1038.	0.5	41
2	From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ. Journal of the Royal Society Interface, 2020, 17, 20190621.	1.5	37
3	Influence of Curvature, Growth, and Anisotropy on the Evolution of Turing Patterns on Growing Manifolds. Bulletin of Mathematical Biology, 2019, 81, 759-799.	0.9	36
4	Modern perspectives on near-equilibrium analysis of Turing systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200268.	1.6	34
5	Dynamics of the non-autonomous stochastic p-Laplace equation driven by multiplicative noise. Applied Mathematics and Computation, 2014, 246, 365-376.	1.4	32
6	Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies. Journal of Theoretical Biology, 2018, 449, 35-52.	0.8	32
7	Turing conditions for pattern forming systems on evolving manifolds. Journal of Mathematical Biology, 2021, 82, 4.	0.8	31
8	Bespoke Turing Systems. Bulletin of Mathematical Biology, 2021, 83, 41.	0.9	30
9	Turing–Hopf patterns on growing domains: The torus and the sphere. Journal of Theoretical Biology, 2019, 481, 136-150.	0.8	29
10	Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems. Physical Review E, 2018, 97, 052206.	0.8	23
11	A Non-local Cross-Diffusion Model of Population Dynamics I: Emergent Spatial and Spatiotemporal Patterns. Bulletin of Mathematical Biology, 2020, 82, 112.	0.9	16
12	Emergent structures in reaction-advection-diffusion systems on a sphere. Physical Review E, 2018, 97, 042215.	0.8	15
13	Continuous dispersal in a model of predator–prey-subsidy population dynamics. Ecological Modelling, 2017, 354, 115-122.	1.2	14
14	Two-Species Migration and Clustering in Two-Dimensional Domains. Bulletin of Mathematical Biology, 2017, 79, 2302-2333.	0.9	13
15	Mix and Match: Phenotypic Coexistence as a Key Facilitator of Cancer Invasion. Bulletin of Mathematical Biology, 2020, 82, 15.	0.9	13
16	Isolating Patterns in Open Reaction–Diffusion Systems. Bulletin of Mathematical Biology, 2021, 83, 82.	0.9	13
17	Diffusive instabilities and spatial patterning from the coupling of reaction–diffusion processes with Stokes flow in complex domains. Journal of Fluid Mechanics, 2019, 877, 759-823.	1.4	12
18	Beyond Onsager–Casimir Relations: Shared Dependence of Phenomenological Coefficients on State Variables. Journal of Physical Chemistry Letters, 2018, 9, 7021-7025.	2.1	11

ANDREW L KRAUSE

#	Article	IF	CITATIONS
19	Hybrid approach to modeling spatial dynamics of systems with generalist predators. Journal of Theoretical Biology, 2019, 462, 26-47.	0.8	10
20	Introduction to †Recent progress and open frontiers in Turing's theory of morphogenesis'. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200280.	1.6	10
21	Generalist predator dynamics under kolmogorov versus non-Kolmogorov models. Journal of Theoretical Biology, 2020, 486, 110060.	0.8	8
22	Turing Patterning in Stratified Domains. Bulletin of Mathematical Biology, 2020, 82, 136.	0.9	8
23	A Non-local Cross-Diffusion Model of Population Dynamics II: Exact, Approximate, and Numerical Traveling Waves in Single- and Multi-species Populations. Bulletin of Mathematical Biology, 2020, 82, 113.	0.9	8
24	Predator-prey-subsidy population dynamics on stepping-stone domains with dispersal delays. Journal of Theoretical Biology, 2018, 451, 19-34.	0.8	7
25	Coupled complex Ginzburg–Landau systems with saturable nonlinearity and asymmetric cross-phase modulation. Annals of Physics, 2018, 396, 397-428.	1.0	7
26	Effects of tidal torques on 11/2017 U1 (â€~Oumuamua). Icarus, 2018, 311, 170-174.	1.1	6
27	Chaotic Dynamics in the Planar Gravitational Many-Body Problem with Rigid Body Rotations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1830013.	0.7	6
28	Amplitude death criteria for coupled complex Ginzburg–Landau systems. Nonlinear Dynamics, 2019, 97, 151-159.	2.7	5
29	Lattice and continuum modelling of a bioactive porous tissue scaffold. Mathematical Medicine and Biology, 2019, 36, 325-360.	0.8	3
30	Predicting Bone Formation in Mesenchymal Stromal Cell-Seeded Hydrogels Using Experiment-Based Mathematical Modeling. Tissue Engineering - Part A, 2020, 26, 1014-1023.	1.6	3
31	Unstaggered-staggered solitons on one- and two-dimensional two-component discrete nonlinear SchrĶdinger lattices. Communications in Nonlinear Science and Numerical Simulation, 2020, 85, 105244.	1.7	3
32	Bifurcations and Dynamics Emergent From Lattice and Continuum Models of Bioactive Porous Media. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1830037.	0.7	1
33	Locating the Baking Isotherm in a SÃ,derberg Electrode: Analysis of a Moving Thermistor Model. SIAM Journal on Applied Mathematics, 2021, 81, 1691-1716.	0.8	1