Krishna Gunugunuri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2221517/publications.pdf

Version: 2024-02-01

186265 2,189 53 28 citations h-index papers

44 g-index 53 53 53 2780 docs citations times ranked citing authors all docs

243625

#	Article	IF	CITATIONS
1	Effect of Zirconia Doping on the Structure and Stability of CaO-Based Sorbents for CO ₂ Capture during Extended Operating Cycles. Journal of Physical Chemistry C, 2011, 115, 24804-24812.	3.1	156
2	Unexpected Behavior of Copper in Modified Ferrites during High Temperature WGS Reactionâ€"Aspects of Fe ³⁺ â†" Fe ²⁺ Redox Chemistry from Mössbauer and XPS Studies. Journal of Physical Chemistry C, 2012, 116, 11019-11031.	3.1	131
3	Structural Characterization and Oxidehydrogenation Activity of CeO ₂ /Al ₂ O ₃ and V ₂ O ₅ /CeO ₂ /Al ₂ O ₃ Catalysts. Journal of Physical Chemistry C. 2007. 111. 18751-18758.	3.1	104
4	Silica supported transition metal-based bimetallic catalysts for vapour phase selective hydrogenation of furfuraldehyde. Journal of Molecular Catalysis A, 2007, 265, 276-282.	4.8	102
5	Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole. Journal of Molecular Catalysis A, 2006, 253, 44-51.	4.8	99
6	Ceria-Modified Manganese Oxide/Titania Materials for Removal of Elemental and Oxidized Mercury from Flue Gas. Journal of Physical Chemistry C, 2011, 115, 24300-24309.	3.1	95
7	An easy-to-use heterogeneous promoted zirconia catalyst for Knoevenagel condensation in liquid phase under solvent-free conditions. Journal of Molecular Catalysis A, 2006, 258, 302-307.	4.8	88
8	Sulfur tolerant metal doped Fe/Ce catalysts for high temperature WGS reaction at low steam to CO ratios – XPS and Mössbauer spectroscopic study. Journal of Catalysis, 2011, 282, 258-269.	6.2	80
9	Modified zeolite membrane reactor for high temperature water gas shift reaction. Journal of Membrane Science, 2010, 354, 114-122.	8.2	77
10	Single Nozzle Flame-Made Highly Durable Metal Doped Ca-Based Sorbents for CO ₂ Capture at High Temperature. Energy & En	5.1	72
11	High Temperature Water Gas Shift Reaction over Nanocrystalline Copper Codoped-Modified Ferrites. Journal of Physical Chemistry C, 2011, 115, 7586-7595.	3.1	70
12	Zeolite Membrane Reactor for High-Temperature Water-Gas Shift Reaction: Effects of Membrane Properties and Operating Conditions. Energy & Energy & 2013, 27, 4471-4480.	5.1	70
13	Simultaneous Removal of Elemental Mercury and NO from Flue Gas Using CeO ₂ Modified MnO _{<i>x</i>} /TiO ₂ Materials. Energy & Ene	5.1	68
14	Cr- and Ce-Doped Ferrite Catalysts for the High Temperature Waterâ^'Gas Shift Reaction: TPR and Mossbauer Spectroscopic Study. Journal of Physical Chemistry C, 2011, 115, 920-930.	3.1	66
15	A rapid microwave-assisted solution combustion synthesis of CuO promoted CeO2–MxOy (M=Zr, La, Pr) Tj ET	Qq1.1 0.7	843]4 rgBT /(
16	Effect of Pressure on High-Temperature Water Gas Shift Reaction in Microporous Zeolite Membrane Reactor. Industrial & Engineering Chemistry Research, 2012, 51, 1364-1375.	3.7	60
17	A high-performance oxygen evolution catalyst in neutral-pH for sunlight-driven CO2 reduction. Nature Communications, 2019, 10, 4081.	12.8	57
18	Reforming of methane with carbon dioxide over Pt/ZrO2/SiO2 catalysts—Effect of zirconia to silica ratio. Applied Catalysis A: General, 2010, 389, 92-100.	4.3	54

#	Article	IF	CITATIONS
19	Single step synthesis of nanosized CeO2–MxOy mixed oxides (MxOyÂ=ÂSiO2, TiO2, ZrO2, and Al2O3) by microwave induced solution combustion synthesis: characterization and CO oxidation. Journal of Materials Science, 2009, 44, 2743-2751.	3.7	45
20	Understanding the chemical state of palladium during the direct NO decomposition – influence of pretreatment environment and reaction temperature. RSC Advances, 2017, 7, 19645-19655.	3.6	45
21	Influence of alumina and titania on the structure and catalytic properties of sulfated zirconia: Beckmann rearrangement. Journal of Molecular Catalysis A, 2009, 306, 62-68.	4.8	44
22	Sulfur-Tolerant Mn-Ce-Ti Sorbents for Elemental Mercury Removal from Flue Gas: Mechanistic Investigation by XPS. Journal of Physical Chemistry C, 2015, 119, 8634-8644.	3.1	42
23	Structural characterization and dehydration activity of CeO2–SiO2 and CeO2–ZrO2 mixed oxides prepared by a rapid microwave-assisted combustion synthesis method. Journal of Molecular Catalysis A, 2010, 319, 52-57.	4.8	41
24	Influence of the Synthesis Method on the Structure and CO ₂ Adsorption Properties of Ca/Zr Sorbents. Energy & Supply 1988 (2014, 28, 3292-3299).	5.1	41
25	Evaluation of Rh/Ce \times Ti 1 \hat{a} ' \times O 2 catalysts for synthesis of oxygenates from syngas using XPS and TPR techniques. Catalysis Today, 2016, 263, 75-83.	4.4	38
26	Long-term WGS stability of Fe/Ce and Fe/Ce/Cr catalysts at high and low steam to CO ratios—XPS and M¶ssbauer spectroscopic study. Applied Catalysis A: General, 2012, 415-416, 101-110.	4.3	36
27	Microwave-assisted Synthesis and Structural Characterization of Nanosized Ce0.5Zr0.5O2 for CO Oxidation. Catalysis Letters, 2009, 130, 227-234.	2.6	31
28	Characterization and photocatalytic activity of TiO2â€"M x O y (M x O y Â=ÂSiO2, Al2O3, and ZrO2) mixed oxides synthesized by microwave-induced solution combustion technique. Journal of Materials Science, 2009, 44, 4874-4882.	3.7	29
29	Effect of Copper as a Dopant on the Water Gas Shift Activity of Fe/Ce and Fe/Cr Modified Ferrites. Catalysis Letters, 2011, 141, 27-32.	2.6	24
30	Synthesis of Nanosized Ceria-Zirconia Solid Solutions by a Rapid Microwave-Assisted Combustion Method. The Open Physical Chemistry Journal, 2009, 3, 24-29.	0.4	23
31	Selective tert-butylation of phenol over molybdate- and tungstate-promoted zirconia catalysts. Applied Catalysis A: General, 2007, 332, 183-191.	4.3	22
32	Influence of Foreign Metal Dopants on the Durability and Performance of Zr/Ca Sorbents during High Temperature CO ₂ Capture. Separation Science and Technology, 2014, 49, 47-54.	2.5	22
33	CeO2–MxOy (M = Fe, Co, Ni, and Cu)-Based Oxides for Direct NO Decomposition. Journal of Physical Chemistry C, 2019, 123, 28695-28706.	3.1	21
34	Controlled Hydrogenation of Acetophenone Over Pt/CeO2–MO x (MÂ=ÂSi, Ti, Al, and Zr) Catalysts. Catalysis Letters, 2009, 131, 328-336.	2.6	20
35	A Rapid Microwave-Induced Solution Combustion Synthesis of Ceria-Based Mixed Oxides for Catalytic Applications. Catalysis Surveys From Asia, 2009, 13, 237-255.	2.6	20
36	Preparation, characterization and lysozyme immobilization studies on siliceous mesocellular foams: Effect of precursor chemistry on pore size, wall thickness and interpore spacing. Microporous and Mesoporous Materials, 2014, 190, 215-226.	4.4	20

#	Article	IF	Citations
37	Monolayer Detection of Supported Fe and Co Oxides on Ceria To Establish Structure–Activity Relationships for Reduction of NO by CO. Journal of Physical Chemistry C, 2017, 121, 8435-8443.	3.1	18
38	Synthesis of monophasic Ce0.5Zr0.5O2 solid solution by microwave-induced combustion method. Journal of Materials Science, 2007, 42, 3557-3563.	3.7	17
39	Effect of Cu substitution on the structure and reactivity of CuxCo3-xO4 spinel catalysts for direct NOx decomposition. Catalysis Today, 2021, 360, 204-212.	4.4	14
40	"PdO vs. PtOâ€â€"The Influence of PGM Oxide Promotion of Co3O4 Spinel on Direct NO Decomposition Activity. Catalysts, 2019, 9, 62.	3.5	13
41	Contrasting Effects of Potassium Addition on M3O4 (M = Co, Fe, and Mn) Oxides during Direct NO Decomposition Catalysis. Catalysts, 2020, 10, 561.	3.5	13
42	Introduction About WGS Reaction. , 2015, , 1-20.		10
43	Monolayer supported CuO _x /Co ₃ O ₄ as an active and selective low temperature NO _x decomposition catalyst. Catalysis Science and Technology, 2019, 9, 1132-1140.	4.1	10
44	Mechanism and Kinetics of the WGS Reaction. , 2015, , 225-261.		5
45	Low-Temperature WGS Reaction. , 2015, , 47-100.		4
46	High-Temperature WGS Reaction. , 2015, , 21-45.		3
47	WGS Reaction over Co-Mo Sulphided Catalysts. , 2015, , 101-126.		2
48	Homogeneous WGS Reaction. , 2015, , 169-205.		2
49	Photo-Catalytic Water-Gas Shift Reaction. , 2015, , 207-223.		2
50	Impact of Interfacial Roughness on the Sorption Properties of Nanocast Polymers. Macromolecules, 2016, 49, 2663-2670.	4.8	1
51	A Facile Microwave-Assisted Solution Combustion Synthesis of Highly Stable Magnesium Oxide for Multicomponent Mannich Reaction. Current Catalysis, 2012, 1, 164-170.	0.5	1
52	Ultra High Temperature WGS Reaction. , 2015, , 127-136.		0
53	WGS Reaction in Membrane Reactors. , 2015, , 137-168.		0