
Takuma Tsuji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2221424/publications.pdf Version: 2024-02-01

Τλκιιμά Τειμι

#	Article	IF	CITATIONS
1	Characterization of micron-scale protein-depleted plasma membrane domains in phosphatidylserine-deficient yeast cells. Journal of Cell Science, 2022, 135, .	2.0	8
2	Ultrastructural localization of de novo synthesized phosphatidylcholine in yeast cells by freeze-fracture electron microscopy. STAR Protocols, 2021, 2, 100990.	1.2	1
3	A method to selectively internalise submicrometer boron carbide particles into cancer cells using surface transferrin conjugation for developing a new boron neutron capture therapy agent. Journal of Experimental Nanoscience, 2020, 15, 1-11.	2.4	11
4	<scp>ESCRT</scp> machinery mediates selective microautophagy of endoplasmic reticulum in yeast. EMBO Journal, 2020, 39, e102586.	7.8	77
5	Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nature Structural and Molecular Biology, 2020, 27, 1185-1193.	8.2	253
6	Multifarious roles of lipid droplets in autophagy – Target, product, and what else?. Seminars in Cell and Developmental Biology, 2020, 108, 47-54.	5.0	21
7	Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13368-13373.	7.1	63
8	Definition of phosphoinositide distribution in the nanoscale. Current Opinion in Cell Biology, 2019, 57, 33-39.	5.4	22
9	Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. Journal of Cell Science, 2018, 131, .	2.0	35
10	Lipids and lipid domains of the yeast vacuole. Biochemical Society Transactions, 2018, 46, 1047-1054.	3.4	21
11	Immunoelectron Microscopy of Gangliosides. Methods in Molecular Biology, 2018, 1804, 231-239.	0.9	1
12	A New Electron Microscopic Method to Observe the Distribution of Phosphatidylinositol 3,4-bisphosphate. Acta Histochemica Et Cytochemica, 2017, 50, 141-147.	1.6	2
13	Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole. ELife, 2017, 6, .	6.0	109
14	Freeze-fracture-etching Electron Microscopy for Facile Analysis of Yeast Ultrastructure. Bio-protocol, 2017, 7, e2556.	0.4	1
15	Structural basis of the Inv compartment and ciliary abnormalities in <i>Inv/nphp2</i> mutant mice. Cytoskeleton, 2016, 73, 45-56.	2.0	9
16	Spectroscopic and morphological studies on interaction between gold nanoparticle and liposome constructed with phosphatidylcholine. IOP Conference Series: Materials Science and Engineering, 2015, 76, 012001.	0.6	7
17	Improving the systemic drug delivery efficacy of nanoparticles using a transferrin variant for targeting. Journal of Controlled Release, 2014, 180, 33-41.	9.9	23
18	Study on interaction between phosphatidylcholine(PC) liposome and gold nanoparticles by TEM observation. Journal of Surface Analysis (Online), 2014, 20, 230-233.	0.1	3

#	Article	IF	CITATIONS
19	Endocytic mechanism of transferrin-conjugated nanoparticles and the effects of their size and ligand number on the efficiency of drug delivery. Microscopy (Oxford, England), 2013, 62, 341-352.	1.5	30