List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2221294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical oxidation of acetaminophen in aqueous solutions: Kinetic evaluation of hydrolysis, hydroxylation and dimerization processes. Electrochimica Acta, 2009, 54, 7407-7415.	2.6	246
2	A comprehensive study on the electrocatalytic degradation, electrochemical behavior and degradation mechanism of malachite green using electrodeposited nanostructured β-PbO2 electrodes. Water Research, 2018, 144, 462-473.	5.3	152
3	Convergent paired electrocatalytic degradation of p-dinitrobenzene by Ti/SnO2-Sb/β-PbO2 anode. A new insight into the electrochemical degradation mechanism. Applied Catalysis B: Environmental, 2020, 261, 118226.	10.8	143
4	Electrochemically Assisted Self-Assembly Technique for the Fabrication of Mesoporous Metal–Organic Framework Thin Films: Composition of 3D Hexagonally Packed Crystals with 2D Honeycomb-like Mesopores. Journal of the American Chemical Society, 2017, 139, 4753-4761.	6.6	125
5	A Facile Electrochemical Method for Synthesis of New Benzofuran Derivatives. Journal of Organic Chemistry, 2004, 69, 2637-2640.	1.7	105
6	Electrochemical study of catechol and some 3-substituted catechols in the presence of 4-hydroxy coumarin: application to the electro-organic synthesis of new coumestan derivatives. Journal of Electroanalytical Chemistry, 1997, 420, 127-134.	1.9	103
7	Electroorganic Synthesis of Catecholthioethers. Journal of Organic Chemistry, 2005, 70, 7769-7772.	1.7	97
8	Diversity in electrochemical oxidation of dihydroxybenzoic acids in the presence of acetylacetone. A green method for synthesis of new benzofuran derivatives. Green Chemistry, 2005, 7, 638.	4.6	95
9	Electrochemical oxidation of catechols in the presence of acetylacetone. Journal of Electroanalytical Chemistry, 2004, 566, 31-37.	1.9	91
10	Electroorganic Synthesis of New Benzofuro[2,3-d]pyrimidine Derivatives. Journal of Organic Chemistry, 2002, 67, 5036-5039.	1.7	90
11	Mechanistic study of electrochemical oxidation of 4-tert-butylcatechol. Electrochimica Acta, 2004, 49, 2495-2502.	2.6	90
12	Application of a fluidized three-dimensional electrochemical reactor with Ti/SnO2–Sb/β-PbO2 anode and granular activated carbon particles for degradation and mineralization of 2,4-dichlorophenol: Process optimization and degradation pathway. Chemosphere, 2021, 279, 130640.	4.2	80
13	Enhanced electrocatalytic degradation of bisphenol A by graphite/β-PbO2 anode in a three-dimensional electrochemical reactor. Journal of Environmental Chemical Engineering, 2021, 9, 106072.	3.3	79
14	Electrosynthesis of Symmetric and Highly Conjugated Benzofuran via a Unique ECECCC Electrochemical Mechanism:Â Evidence for Predominance of Electrochemical Oxidation versus Intramolecular Cyclization. Journal of Organic Chemistry, 2007, 72, 3646-3651.	1.7	77
15	Electrochemical study of catechol and 4-methylcatechol in methanol. Application to the electro-organic synthesis of 4,5-dimethoxy-and 4-methoxy-5-methyl-o-benzoquinone. Journal of Electroanalytical Chemistry, 1996, 405, 133-140.	1.9	73
16	Electro-oxidation of catechols in the presence of benzenesulfinic acid. Application to electro-organic synthesis of new sulfone derivatives. Journal of Electroanalytical Chemistry, 2002, 520, 145-149.	1.9	69
17	A combined advanced oxidation process: Electrooxidation-ozonation for antibiotic ciprofloxacin removal from aqueous solution. Journal of Electroanalytical Chemistry, 2018, 808, 82-89.	1.9	69
18	Mechanistic study of homogeneous reactions coupled with electrochemical oxidation of catechols. Journal of the Iranian Chemical Society, 2009, 6, 448-476.	1.2	68

#	Article	IF	CITATIONS
19	Electrochemical study of 3,4-dihydroxybenzoic acid and 4- tert -butylcatechol in the presence of 4-hydroxycoumarin application to the electro-organic synthesis of coumestan derivatives. Journal of Electroanalytical Chemistry, 1997, 430, 141-146.	1.9	67
20	Electrocatalytic degradation of diuron herbicide using three-dimensional carbon felt/β-PbO2 anode as a highly porous electrode: Influencing factors and degradation mechanisms. Chemosphere, 2021, 276, 130141.	4.2	67
21	Electrochemical oxidation of quercetin in the presence of benzenesulfinic acids. Journal of Electroanalytical Chemistry, 2003, 547, 191-195.	1.9	66
22	Parameter optimization and degradation mechanism for electrocatalytic degradation of 2,4-diclorophenoxyacetic acid (2,4-D) herbicide by lead dioxide electrodes. RSC Advances, 2019, 9, 5064-5075.	1.7	62
23	Improved degradation of diuron herbicide and pesticide wastewater treatment in a three-dimensional electrochemical reactor equipped with PbO2 anodes and granular activated carbon particle electrodes. Journal of Cleaner Production, 2021, 322, 129094.	4.6	61
24	Electrochemical oxidation of some dihydroxybenzene derivatives in the presence of indole. Journal of Electroanalytical Chemistry, 2008, 616, 79-86.	1.9	58
25	Electrodegradation of 2,4-dichlorophenoxyacetic acid herbicide from aqueous solution using three-dimensional electrode reactor with Gĺ²-PbO ₂ anode: Taguchi optimization and degradation mechanism determination. RSC Advances, 2018, 8, 39256-39268.	1.7	58
26	Kinetic study of the oxidation of some catecholamines by digital simulation of cyclic voltammograms. International Journal of Chemical Kinetics, 2005, 37, 17-24.	1.0	57
27	Electrochemical Oxidation of 2,3-Dimethylhydroquinone in the Presence of 1,3-Dicarbonyl Compounds. Journal of Organic Chemistry, 2006, 71, 2139-2142.	1.7	56
28	Investigation of the electro-methoxylation reaction. Journal of Electroanalytical Chemistry, 2000, 481, 208-214.	1.9	54
29	Diuron degradation using three-dimensional electro-peroxone (3D/E-peroxone) process in the presence of TiO2/GAC: Application for real wastewater and optimization using RSM-CCD and ANN-GA approaches. Chemosphere, 2021, 266, 129179.	4.2	52
30	Electrochemical evidences in oxidation of acetaminophen in the presence of glutathione and N-acetylcysteine. Chemical Communications, 2010, 46, 409-411.	2.2	50
31	Electrochemical evaluation of coumestan modified carbon paste electrode: Study on its application as a NADH biosensor in presence of uric acid. Sensors and Actuators B: Chemical, 2006, 114, 610-617.	4.0	49
32	Voltammetry of Electroinactive Species Using Quinone/Hydroquinone Redox: A Known Redox System Viewed in a New Perspective. Electroanalysis, 2007, 19, 1382-1386.	1.5	49
33	Electrochemical oxidation of 4-substituted urazoles in the presence of arylsulfinic acids: an efficient method for the synthesis of new sulfonamide derivatives. Green Chemistry, 2012, 14, 963.	4.6	49
34	Moving-bed biofilm reactor combined with three-dimensional electrochemical pretreatment (MBBR–3DE) for 2,4-D herbicide treatment: application for real wastewater, improvement of biodegradability. RSC Advances, 2021, 11, 9608-9620.	1.7	49
35	Paired electrochemical synthesis of new organosulfone derivatives. Electrochimica Acta, 2008, 53, 3350-3355.	2.6	48
36	Electrochemical oxidation of catechol in the presence of cyclopentadiene. Investigation of electrochemically induced Diels–Alder reactions. Chemical Communications, 2006, , 1631.	2.2	47

#	Article	IF	CITATIONS
37	Electrochemical study of fenitrothion and bifenox and their simultaneous determination using multiwalled carbon nanotube modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2016, 767, 188-194.	1.9	47
38	Paired electrochemical conversion of nitroarenes to sulfonamides, diarylsulfones and bis(arylsulfonyl)aminophenols. Green Chemistry, 2018, 20, 1499-1505.	4.6	47
39	Electrochemical study of catechol and some of 3-substituted catechols in the presence of 1,3-diethyl-2-thio-barbituric acid. Application to the electro-organic synthesis of new dispirothiopyrimidine derivatives. Journal of Electroanalytical Chemistry, 2001, 510, 108-114.	1.9	45
40	Kinetic Study of Electrochemically Induced Michael Reactions of <i>o</i> -Quinones with Meldrum's Acid Derivatives. Synthesis of Highly Oxygenated Catechols. Journal of Organic Chemistry, 2008, 73, 3428-3434.	1.7	45
41	Electrochemical synthesis of pillared layer mixed ligand metal–organic framework: DMOF-1–Zn. RSC Advances, 2015, 5, 36547-36551.	1.7	45
42	Electrochemical oxidation of catechols in the presence of 4-hydroxy-6-methyl-2-pyrone. Tetrahedron, 2002, 58, 4949-4953.	1.0	44
43	Electrochemical synthesis of 5,6-dihydroxy-2-methyl-1-benzofuran-3-carboxylate derivatives. Tetrahedron, 2007, 63, 3894-3898.	1.0	44
44	An Efficient Method for Production and Storage of Unstable S-Nitrosothiols Under Mild and Heterogeneous Condition with Sodium Nitrite and Oxalic Acid Dihydrate. Synthetic Communications, 1999, 29, 2277-2280.	1.1	42
45	Electrochemical synthesis of amino-substituted 1,2-benzoquinone derivatives. Journal of Electroanalytical Chemistry, 2005, 577, 197-203.	1.9	42
46	Electrochemical Synthesis and Mechanestic Study of Quinone Imines Exploiting the Dual Character of <i>N,N</i> -Dialkyl- <i>p</i> -phenylenediamines. Organic Letters, 2011, 13, 1928-1931.	2.4	40
47	An efficient electrochemical method for the atom economical synthesis of some benzoxazole derivatives. Green Chemistry, 2013, 15, 2441.	4.6	40
48	Combined electrocoagulation/electrooxidation process for the COD removal and recovery of tannery industry wastewater. Environmental Progress and Sustainable Energy, 2018, 37, 637-644.	1.3	40
49	Electrochemical oxidation of activated sludge by using direct and indirect anodic oxidation. Desalination and Water Treatment, 2015, 56, 2234-2245.	1.0	39
50	Electrochemical synthesis of p-tolylsulfonylbenzenediols. Tetrahedron Letters, 2002, 43, 147-150.	0.7	38
51	Synthesis, characterization and structural studies of new palladium(II) complexes including non-symmetric phosphorus ylides. Inorganica Chimica Acta, 2010, 363, 3973-3980.	1.2	38
52	Electrochemical dimerization of 4-methylesculetin: Synthesis and kinetic study of a highly-oxygenated dimer. Journal of Electroanalytical Chemistry, 2011, 650, 226-232.	1.9	38
53	Electrochemical Study of Catechol in the Presence of Dibuthylamine and Diethylamine in Aqueous Media: Part 1. Electrochemical Investigation. Electroanalysis, 2005, 17, 1755-1760.	1.5	37
54	An efficient electrochemical synthesis of diamino-o-benzoquinone: Mechanistic and kinetic evaluation of azide ion with o-benzoquinone. Chemical Communications, 2007, , 162-164.	2.2	37

#	Article	IF	CITATIONS
55	Development of a needle trap device packed with zinc based metal-organic framework sorbent for the sampling and analysis of polycyclic aromatic hydrocarbons in the air. Microchemical Journal, 2019, 148, 346-354.	2.3	37
56	Electrocatalytic degradation of dibenzoazepine drugs by fluorine doped β-PbO2 electrode: New insight into the electrochemical oxidation and mineralization mechanisms. Journal of Electroanalytical Chemistry, 2020, 862, 114037.	1.9	37
57	Cyclic Voltammetric Study of the Oxidation of Catechols in the Presence of Cyanide Ion. Electroanalysis, 2004, 16, 1359-1365.	1.5	36
58	Electrochemical study of Alamar Blue (resazurin) in aqueous solutions and room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate at a glassy carbon electrode. RSC Advances, 2014, 4, 8431-8438.	1.7	36
59	Effect of different concentrations of substrate in microbial fuel cells toward bioenergy recovery and simultaneous wastewater treatment. Environmental Technology (United Kingdom), 2022, 43, 1-9.	1.2	36
60	Electrochemical oxidaton of N,N-dialkyl-p-phenylenediamines in the presence of arylsulfinic acids. An efficient method for the synthesis of new sulfonamide derivatives. Electrochemistry Communications, 2009, 11, 488-491.	2.3	35
61	A comprehensive study of electrochemical disinfection of water using direct and indirect oxidation processes. Journal of Environmental Chemical Engineering, 2019, 7, 102785.	3.3	35
62	Synthesis and application of [Zr-UiO-66-PDC-SO3H]Cl MOFs to the preparation of dicyanomethylene pyridines via chemical and electrochemical methods. Scientific Reports, 2021, 11, 16817.	1.6	34
63	New insights into the electrochemical behavior of acid orange 7: Convergent paired electrochemical synthesis of new aminonaphthol derivatives. Scientific Reports, 2017, 7, 41963.	1.6	33
64	Anodic electrosynthesis of MIL-53(Al)-N(CH2PO3H2)2 as a mesoporous catalyst for synthesis of novel (N-methyl-pyrrol)-pyrazolo[3,4-b]pyridines via a cooperative vinylogous anomeric based oxidation. Scientific Reports, 2021, 11, 19370.	1.6	33
65	Electrochemical nitration of catechols: Kinetic study by digital simulation of cyclic voltammograms. Journal of Electroanalytical Chemistry, 2007, 602, 37-42.	1.9	32
66	New batch electro-coagulation process for treatment and recovery of high organic load and low volume egg processing industry wastewater. Chemical Engineering Research and Design, 2018, 119, 96-103.	2.7	32
67	Investigation of the Electromethoxylation Reaction Part 2: Electrochemical Study of 3-Methylcatechol and 2,3-Dihydroxybenzaldehyde in Methanol. Electroanalysis, 2001, 13, 1008-1015.	1.5	30
68	Efficient electrosynthesis of 1,2,4-triazino[3,4-b]-1,3,4-thiadiazine derivatives. Tetrahedron Letters, 2006, 47, 8553-8557.	0.7	30
69	Continuous thickening of activated sludge by electro-flotation. Separation and Purification Technology, 2013, 107, 166-171.	3.9	30
70	Electrochemical reduction of CO2 to formate ion using nanocubic mesoporous In(OH)3/carbon black system. Materials Chemistry and Physics, 2017, 193, 109-116.	2.0	30
71	Convergent and Divergent Paired Electrodeposition of Metal-Organic Framework Thin Films. Scientific Reports, 2019, 9, 14325.	1.6	30
72	Electrochemical study of catechol–boric acid complexes. Electrochimica Acta, 2008, 53, 2751-2756.	2.6	29

#	Article	IF	CITATIONS
73	Regioselective Green Electrochemical Approach to the Synthesis of Nitroacetaminophen Derivatives. Organic Letters, 2015, 17, 4666-4669.	2.4	29
74	Degradation of azo dye C.I. Acid Red 18 using an eco-friendly and continuous electrochemical process. Korean Journal of Chemical Engineering, 2016, 33, 532-538.	1.2	29
75	Electrochemical study of 4-tert-butylcatechol in the presence of 1,3-dimethylbarbituric acid and 1,3-diethyl-2-thiobarbituric acid. Application to the electro-organic synthesis of new corresponding spiropyrimidine derivatives. Journal of Electroanalytical Chemistry, 2001, 517, 121-125.	1.9	28
76	Mechanistic study of electrochemical oxidation of o-dihydroxybenzenes in the presence of 4-hydroxy-1-methyl-2(1H)-quinolone. Electrochimica Acta, 2005, 51, 739-744.	2.6	28
77	Electrochemical synthesis of new catechol derivatives. Electrochimica Acta, 2006, 51, 2620-2624.	2.6	28
78	An efficient electrochemical method for the synthesis of methylene blue. Electrochemistry Communications, 2009, 11, 2261-2264.	2.3	28
79	Electrochemical behavior of nano-composite containing 4-hydroxy-2-(triphenylphosphonio)phenolate and multi-wall carbon nanotubes spiked in carbon paste and its application for electrocatalytic oxidation of hydrazine. Sensors and Actuators B: Chemical, 2010, 151, 153-161.	4.0	28
80	Electrochemical study of 1,2-dihydropyridazine-3,6-dione in protic and aprotic solvents: Oxidative ring cleavage and reduction. Electrochimica Acta, 2011, 56, 6089-6096.	2.6	28
81	Electrochemical Oxidation of Some Aminophenols in Various pHs. Journal of the Electrochemical Society, 2013, 160, H41-H46.	1.3	28
82	Electrocatalytic activity of 6,7-dihydroxy-3-methyl-9-thia-4,4a-diazafluoren-2-one/multi-wall carbon nanotubes immobilized on carbon paste electrode for NADH oxidation: Application to the trace determination of NADH. Journal of Electroanalytical Chemistry, 2010, 639, 15-20.	1.9	27
83	A highly sensitive and selective sensor on the basis of 4-hydroxy-2-(triphenylphosphonio)phenolate and multi-wall carbon nanotubes for electrocatalytic determination of folic acid in presence of ascorbic acid and uric acid. Electrochimica Acta, 2011, 58, 654-661.	2.6	27
84	Electrodeposition of Catechol on Glassy Carbon Electrode and Its Electrocatalytic Activity Toward NADH Oxidation. Electroanalysis, 2012, 24, 1932-1936.	1.5	27
85	Experimental and Theoretical Analysis of the Electrochemical Oxidation of Catechol and Hydroquinone Derivatives in the Presence of Various Nucleophiles. Journal of the Electrochemical Society, 2013, 160, H693-H698.	1.3	27
86	Selective electrochemical determination of homocysteine in the presence of cysteine and glutathione. Electrochimica Acta, 2014, 123, 353-361.	2.6	27
87	Electrochemical and chemical synthesis of different types of sulfonamide derivatives of N,N-dimethyl-1,4-benzenediamine using 4-nitroso-N,N-dimethylaniline. Green Chemistry, 2015, 17, 3508-3514.	4.6	27
88	Optimization of three-dimensional electrochemical process for degradation of methylene blue from aqueous environments using central composite design. Environmental Technology and Innovation, 2020, 18, 100711.	3.0	27
89	Mechanistic study of the oxidation of catechol in the presence of secondary amines by digital simulation of cyclic voltammograms. Electrochimica Acta, 2004, 49, 591-595.	2.6	26
90	Investigation of the electro-oxidation and oxidation of catechol in the presence of sulfanilic acid. Research on Chemical Intermediates, 2004, 30, 299-309.	1.3	26

#	Article	IF	CITATIONS
91	Electrochemical oxidation of 4-morpholinoaniline in aqueous solutions: Synthesis of a new trimer of 4-morpholinoaniline. Electrochimica Acta, 2011, 56, 3899-3904.	2.6	26
92	Optimization and Modeling of Tetracycline Removal from Wastewater by Three-Dimensional Electrochemical System: Application of Response Surface Methodology and Least Squares Support Vector Machine. Environmental Modeling and Assessment, 2020, 25, 327-341.	1.2	26
93	Carbon felt modified with N-doped rGO for an efficient electro-peroxone process in diuron degradation and biodegradability improvement of wastewater from a pesticide manufacture: Optimization of process parameters, electrical energy consumption and degradation pathway. Separation and Purification Technology, 2021, 274, 118962.	3.9	26
94	Mechanism of electrochemical oxidation of catechol and 3-substituted catechols in the presence of barbituric acid derivatives. Synthesis of new dispiropyrimidine derivatives. Perkin Transactions II RSC, 2002, , 829-834.	1.1	25
95	Investigation of electrochemically induced conjugate addition reaction: A facile approach to preparation of Schonberg adduct. Journal of Electroanalytical Chemistry, 2008, 621, 113-116.	1.9	25
96	Electrochemical oxidation of catechol in the presence of indole: a facile and one-pot method for the synthesis of trisindolyl-o-benzoquinone. Tetrahedron Letters, 2008, 49, 645-649.	0.7	25
97	A comprehensive electrochemical study of 2-mercaptobenzoheterocyclic derivatives. Air-assisted electrochemical synthesis of new sulfonamide derivatives. Electrochimica Acta, 2020, 353, 136451.	2.6	25
98	A facile galvanostatic method for the synthesis of quinoxalinediones. Electrochimica Acta, 2006, 52, 1234-1239.	2.6	24
99	Electrochemical oxidation of catechols in the presence of cyanoacetone and methyl cyanoacetate. Journal of Electroanalytical Chemistry, 2009, 626, 36-41.	1.9	24
100	Electrochemically mediated oxidation of glutathione and N-acetylcysteine with 4,4′-biphenol. Electrochimica Acta, 2011, 56, 9311-9316.	2.6	24
101	Determination of urinary methylhippuric acids using <scp>MIL</scp> â€53â€ <scp>NH</scp> ₂ (<scp>Al</scp>) metal–organic framework in microextraction by packed sorbent followed by <scp>HPLC</scp> – <scp>UV</scp> analysis. Biomedical Chromatography, 2020, 34, e4725.	0.8	24
102	A green approach for the electrochemical synthesis of 4-morpholino-2-(arylsulfonyl)benzenamines. Tetrahedron Letters, 2010, 51, 4862-4865.	0.7	23
103	Mechanism diversity in anodic oxidation of N,N-dimethyl-p-phenylenediamine by varying pH. Journal of Electroanalytical Chemistry, 2013, 704, 75-79.	1.9	23
104	Activated sludge treatment by electro-Fenton process: Parameter optimization and degradation mechanism. Korean Journal of Chemical Engineering, 2015, 32, 1570-1577.	1.2	23
105	Facile and sensitive determination of urinary mandelic acid by combination of metal organic frameworks with microextraction by packed sorbents. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1114-1115, 45-54.	1.2	23
106	Construction of highly efficient new binder-free bimetallic metal–organic framework symmetric supercapacitors: considering surface statistical and morphological analyses. Journal of Materials Chemistry A, 2021, 9, 15381-15393.	5.2	23
107	Investigation of the electrochemical behavior of some catecholamines in the presence of 4-aminobenzoic acid. Electrochimica Acta, 2005, 50, 5633-5640.	2.6	22
108	Electrochemical synthesis of the new substituted phenylpiperazines. Journal of Electroanalytical Chemistry, 2011, 651, 72-79.	1.9	22

#	Article	IF	CITATIONS
109	Electrocatalytic determination of morphine at the surface of a carbon paste electrode spiked with a hydroquinone derivative and carbon nanotubes. Journal of Electroanalytical Chemistry, 2012, 665, 45-51.	1.9	22
110	Electrodegradation of tetracycline using stainless steel net electrodes: Screening of main effective parameters and interactions by means of a two-level factorial design. Korean Journal of Chemical Engineering, 2017, 34, 2999-3008.	1.2	22
111	A Central Composite Design to Optimize In-Situ Electrochemically Produced Ozone for Removal of Reactive Red 198. Journal of the Electrochemical Society, 2018, 165, E121-E128.	1.3	22
112	Electrosynthesis of new quinone sulfonimide derivatives using a conventional batch and a new electrolyte-free flow cell. Green Chemistry, 2018, 20, 4036-4042.	4.6	22
113	Bio-monitoring of non-metabolized BTEX compounds in urine by dynamic headspace-needle trap device packed with 3D Ni/Co-BTC bimetallic metal-organic framework as an efficient absorbent. Microchemical Journal, 2021, 166, 106229.	2.3	22
114	Kinetic study of 4-nitrocatechol oxidation using digital simulation of cyclic voltammograms. Journal of the Iranian Chemical Society, 2011, 8, 803-810.	1.2	21
115	Electro-oxidation and voltammetric determination of oxymetholone in the presence of mestanolone using glassy carbon electrode modified with carbon nanotubes. Talanta, 2014, 121, 1-8.	2.9	21
116	An efficient electrochemical method for a unique synthesis of new derivatives of 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one. Tetrahedron Letters, 2006, 47, 1713-1716.	0.7	20
117	Investigation of electrochemically induced Michael addition reactions. Oxidation of some dihydroxybenzene derivatives in the presence of azide ion. Tetrahedron, 2009, 65, 4742-4750.	1.0	20
118	Electrochemical Synthesis of Sulfonamide Derivatives Based on the Oxidation of 2,5-Diethoxy-4-Morpholinoaniline in the Presence of Arylsulfinic Acids. Journal of Organic Chemistry, 2014, 79, 6326-6329.	1.7	20
119	Pd(II) and Pd(IV) complexes with 5-methyl-5-(4-pyridyl)hydantoin: Synthesis, physicochemical, theoretical, and pharmacological investigation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 1019-1031.	2.0	20
120	Polarographic determination of doxorubicin and daunorubicin in pharmaceutical preparations and biological media. Journal of Pharmaceutical and Biomedical Analysis, 1992, 10, 1053-1057.	1.4	19
121	Electrooxidation of 4-methylcatechol in the presence of barbituric acid derivatives. Electrochimica Acta, 2005, 50, 3648-3654.	2.6	19
122	Catecholthioether Derivatives: Preliminary Study of in-Vitro Antimicrobial and Antioxidant Activities. Chemical and Pharmaceutical Bulletin, 2011, 59, 1149-1152.	0.6	19
123	Efficient Factors on the Hydrolysis Reaction Rate of Some P <i>ara</i> -Aminophenol Derivatives in Acidic pHs. Journal of the Electrochemical Society, 2013, 160, H469-H473.	1.3	19
124	Electrochemical Oxidation of Acetaminophen and 4-(Piperazin-1-yl)phenols in the Presence of 4-Hydroxy-1-methyl-2(1 <i>H</i>)-quinolone. Journal of the Electrochemical Society, 2013, 160, H33-H40.	1.3	19
125	Thermodynamic study of the electrochemical oxidation of some aminophenol derivatives: Experimental and theoretical investigation. Electrochimica Acta, 2015, 154, 235-243.	2.6	19
126	Electrochemical study of catechols in the presence of 4,6-dihydroxy-2-methylpyrimidine. Journal of Electroanalytical Chemistry, 2005, 577, 205-210.	1.9	18

#	Article	IF	CITATIONS
127	An efficient conversion of catechols into 6H-benzofuro[3,2-c][1]-benzopyran-6-one derivatives. Journal of Heterocyclic Chemistry, 2005, 42, 289-292.	1.4	18
128	Investigation of the electrochemical behavior of some dihydroxybenzoic acids in aqueous solution. Monatshefte Für Chemie, 2013, 144, 1481-1488.	0.9	18
129	Electrosynthesis of hydroquinonethioethers using electrochemical oxidation of hydroquinone in the presence of thiouracil derivatives. Chinese Chemical Letters, 2014, 25, 797-801.	4.8	18
130	Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual BrĀ,nsted acidic and Lewis basic sites. Chemical Papers, 2015, 69, .	1.0	18
131	A tunable pair electrochemical strategy for the synthesis of new benzenesulfonamide derivatives. Scientific Reports, 2019, 9, 4537.	1.6	18
132	Development of a needle trap device packed with titaniumâ€based metalâ€organic framework sorbent for extraction of phenolic derivatives in air. Journal of Separation Science, 2020, 43, 1011-1018.	1.3	18
133	Catalytic Oxidation of Thiourea at Alumina Modified Pt Electrode. Sensors, 2003, 3, 534-543.	2.1	17
134	Electrochemical Study of Catechol Derivatives in the Presence of Î ² -diketones: Synthesis of Benzofuran Derivatives. Journal of the Electrochemical Society, 2012, 159, H912-H917.	1.3	17
135	Electrochemical oxidation of hematoxylin – Part 1: Experimental and theoretical studies in an aqueous acidic medium. Journal of Electroanalytical Chemistry, 2012, 681, 76-83.	1.9	17
136	The green and convergent paired Diels–Alder electro-synthetic reaction of 1,4-hydroquinone with 1,2-bis(bromomethyl)benzene. Electrochemistry Communications, 2014, 49, 65-69.	2.3	17
137	Different strategies in electrochemical synthesis of new mono and di-substituted hydroquinone and benzoquinone. Electrochimica Acta, 2014, 147, 310-318.	2.6	17
138	Electrochemical synthesis of diverse sulfonamide derivatives depending on the potential electrode and their antimicrobial activity evaluation. New Journal of Chemistry, 2017, 41, 8279-8288.	1.4	17
139	Mechanistic study of electrochemical oxidation of catechols in the presence of 4-hydroxy-1-methyl-2(1H)-quinolone. Electrochimica Acta, 2005, 50, 5322-5328.	2.6	16
140	A new facile electrochemical method for the synthesis of 4-(pyridine-2-ylthio)benzene-l,2-diols. Electrochimica Acta, 2006, 51, 3327-3331.	2.6	16
141	Chemical and electrochemical procedures for the synthesis of diisopropyltetrahydroquinoxalinedione derivatives. Tetrahedron Letters, 2008, 49, 5043-5046.	0.7	16
142	Simultaneous spectrophotometric determination of binary mixtures of surfactants using continuous wavelet transformation. Journal of Hazardous Materials, 2009, 166, 770-775.	6.5	16
143	Electrochemical oxidation of 4-(piperazin-1-yl)phenols in the presence of indole derivatives: The unique regioselectivity in the synthesis of highly conjugated bisindolyl-p-quinone derivatives. Journal of Electroanalytical Chemistry, 2012, 670, 36-41.	1.9	16
144	Electrochemical study of quinizarin in the presence of arylsulfinic acids: Synthesis of new sulfone derivatives of quinizarin. Journal of Electroanalytical Chemistry, 2012, 671, 44-50.	1.9	16

#	Article	IF	CITATIONS
145	Efficient Factors on the Reaction Rate and Site-Selectivity in Sulfonylation of Catechol and Hydroquinone Derivatives: Experimental and Theoretical Studies. Journal of the Electrochemical Society, 2013, 160, G3001-G3007.	1.3	16
146	Product diversity by changing the electrode potential. Synthesis, kinetic evaluation and antibacterial activity of arylsulfonyl-4,4'-biphenol and bis-arylsulfonyl-4,4'-biphenol derivatives. Electrochimica Acta, 2016, 191, 98-105.	2.6	16
147	Green Electrochemical Synthesis of <i>N</i> -Phenylquinoneimine Derivatives: Dual Action of 4-Morpholinoaniline and <i>N</i> -(4-Aminophenyl) Acetamide. ACS Sustainable Chemistry and Engineering, 2017, 5, 9423-9430.	3.2	16
148	Electropolymerization of catechol on wireless graphite electrode. Unusual cathodic polycatechol formation. Journal of Electroanalytical Chemistry, 2020, 866, 114180.	1.9	16
149	Electrochemical study of iodide in the presence of barbituric acid. Application to coulometric titration of barbituric acid. Microchemical Journal, 2001, 70, 7-11.	2.3	15
150	ECEC and ECE-Type Mechanisms in Electrochemical Oxidation of 4-Substituted Catechols in the Presence of 4-Hydroxy-6-methyl-2-pyrone. Electroanalysis, 2003, 15, 1639-1644.	1.5	15
151	Electrochemical study of 3,4-dihydroxybenzoic acid in the presence of 4-hydroxy-1-methyl-2(1H)-quinolone: Application to electrochemical synthesis of new benzofuran derivative. Journal of Electroanalytical Chemistry, 2006, 586, 161-166.	1.9	15
152	Electrocatalytic oxidation and differential pulse voltammetric determination of hydroxylamine using a 4-hydroxy-2-(triphenylphosphonio)phenolatecarbon nanotubes modified electrode. Analytical Methods, 2011, 3, 306-313.	1.3	15
153	Diversity in electrochemical oxidation of dihydroxybenzenes in the presence of 1-methylindole. Journal of Chemical Sciences, 2011, 123, 709-717.	0.7	15
154	None-catalyst and clean synthesis of symmetric and asymmetric indoles from electrochemical oxidation of 4-aminophenol and p-phenylenediamine in the presence of malononitrile in green media. Journal of Electroanalytical Chemistry, 2014, 733, 47-52.	1.9	15
155	A green strategy for the synthesis of sulfone derivatives of p-methylaminophenol: Kinetic evaluation and antibacterial susceptibility. Scientific Reports, 2017, 7, 4436.	1.6	15
156	Electrochemical simultaneous determination of nifedipine and its main metabolite dehydronifedipine using MWCNT modified glassy carbon electrode. Journal of Molecular Liquids, 2018, 264, 543-549.	2.3	15
157	Electrodisinfection of bacteria-laden in surface water using modified Ti electrode by antimony-and nickel-doped tin oxide composite. Chemosphere, 2021, 263, 127761.	4.2	15
158	Electrochemical Study of Iodide in the Presence of Phenol and o-Cresol: Application to the Catalytic Determination of Phenol and o-Cresol. Sensors, 2004, 4, 170-180.	2.1	14
159	Kinetic study of electrochemically induced Michael reactions ofo-benzoquinones with 2-acetylcyclohexanone and 2-acetylcyclopentanone. Journal of Physical Organic Chemistry, 2007, 20, 49-54.	0.9	14
160	Chemical and electrochemical oxidative coupling of N,N-dialkyl-p-phenylenediamines and arylsulfinic acids. Synthesis of sulfonamide derivatives. Tetrahedron Letters, 2010, 51, 6447-6450.	0.7	14
161	Electrochemical Synthesis Based on the Oxidation of 1-(4-(4-Hydroxyphenyl)piperazin-1-yl)ethanone in the Presence of Nucleophiles. Journal of Organic Chemistry, 2012, 77, 11302-11306.	1.7	14
162	Electrochemical Oxidation of 4-(Piperazin-1-yl)phenol in the Presence of Aryl Sulfinic Acids. Journal of the Electrochemical Society, 2012, 159, E82-E86.	1.3	14

DAVOOD NEMATOLLAHI

#	Article	IF	CITATIONS
163	Determination and detailed mechanism study of antiviral drug fosamprenavir using carbon paste electrode in the presence of Triton X-100. Electrochimica Acta, 2013, 109, 381-388.	2.6	14
164	Synthesis and Characterisation of Hg(II) Complexes Including Bidentate Phosphorus Ylides. Journal of Chemical Research, 2014, 38, 35-40.	0.6	14
165	Facile and one-pot, electro-organic synthesis of a new bis-quinone by the ECCE mechanism in green media. Chinese Chemical Letters, 2014, 25, 1607-1610.	4.8	14
166	Green and Highly Efficient Synthesis of New Bis-benzofurans via Electrochemical Methods under ECECCC Mechanism. Journal of the Electrochemical Society, 2014, 161, G75-G80.	1.3	14
167	Electrochemical Oxidation of Sulfinic Acids: Efficient Oxidative Synthesis of Diaryl Disulfones. Journal of the Electrochemical Society, 2017, 164, G65-G70.	1.3	14
168	Paired Electrochemical Method for Synthesis of New Phenylcarbonimidoyl Dicyanide Dyes. ACS Sustainable Chemistry and Engineering, 2019, 7, 1956-1962.	3.2	14
169	Two-Phase Electrochemical Generation of Aryldiazonium Salts: Application in Electrogenerated Copper-Catalyzed Sandmeyer Reactions. Organic Letters, 2020, 22, 5920-5924.	2.4	14
170	A new electrochemical strategy for the synthesis of a new type of sulfonamide derivatives. Scientific Reports, 2020, 10, 17904.	1.6	14
171	Application of zirconium-based metal–organic frameworks for micro-extraction by packed sorbent of urinary trans, trans-muconic acid. Journal of the Iranian Chemical Society, 2020, 17, 2345-2358.	1.2	14
172	Sensitive determination of urinary muconic acid using magnetic dispersive-solid-phase extraction by magnetic amino-functionalised UiO-66. International Journal of Environmental Analytical Chemistry, 2022, 102, 885-898.	1.8	14
173	Convergent Paired Electrochemical Synthesis of Azoxy and Azo Compounds: An Insight into the Reaction Mechanism. Organic Letters, 2021, 23, 6488-6493.	2.4	14
174	Enhanced electrical conductivity of polyindole prepared by electrochemical polymerization of indole in ionic liquids. Journal of Applied Polymer Science, 2014, 131, .	1.3	13
175	A Green Approach for the Electroorganic Synthesis of New Dihydroxyphenyl-indolin-2-one Derivatives. ACS Sustainable Chemistry and Engineering, 2014, 2, 579-583.	3.2	13
176	Electrochemical Oxidation of Alizarin Red-S on Glassy Carbon Electrode: Mechanistic Study, Surface Adsorption and Preferential Surface Orientation. Journal of the Electrochemical Society, 2016, 163, H559-H565.	1.3	13
177	Efficient extraction of aromatic amines in the air by the needle trap device packed with the zirconium based metal–organic framework sorbent. RSC Advances, 2020, 10, 13562-13572.	1.7	13
178	Electrochemical oxidation of 3,5-di-tert-butylcatechol: Synthesis and characterization of the formed ortho-benzoquinhydrone derivative. Electrochimica Acta, 2006, 51, 6384-6388.	2.6	12
179	Domino Oxidation-Michael Reactions of Catechols with Barbituric Acid Derivatives in Water: An Efficient Synthesis of Polycyclic Pyrimidinones. Synthesis, 2007, 2007, 1513-1516.	1.2	12
180	CEC mechanism in electrochemical oxidation of nitrocatechol–boric acid complexes. Electrochimica Acta, 2011, 56, 9946-9952.	2.6	12

#	Article	IF	CITATIONS
181	Spectrophotometric Determination of Cationic Surfactants Based on Their Effect on the Complexes of Chrome Azurol S with Be ²⁺ and Al ³⁺ Cations. Clean - Soil, Air, Water, 2011, 39, 171-176.	0.7	12
182	Oxidative Ring Cleavage of 4-(4-R-phenyl)-1,2,4-triazolidine-3,5-diones: Electrochemical Behavior and Kinetic Study. Journal of the Electrochemical Society, 2012, 159, F174-F180.	1.3	12
183	Electrochemical oxidation of 2,5-diethoxy-4-morpholinoaniline in aqueous solutions. Electrochimica Acta, 2013, 114, 242-250.	2.6	12
184	Nano-hydroxyapatite/polyaniline composite as an efficient sorbent for sensitive determination of the polycyclic aromatic hydrocarbons in air by a needle trap device. RSC Advances, 2020, 10, 42267-42276.	1.7	12
185	Needle-trap device packed with the MIL-100(Fe) metal–organic framework for the extraction of the airborne organochlorine pesticides. Microchemical Journal, 2021, 171, 106866.	2.3	12
186	Electrochemical Study of Bromide in the Presence of 1,3-Indandione. Application to the Electrochemical Synthesis of Bromo Derivatives of 1,3-Indandione. Molecules, 2001, 6, 639-646.	1.7	11
187	Title is missing!. Journal of Analytical Chemistry, 2001, 56, 1109-1112.	0.4	11
188	Synthesis of catecholthioethers by the selective oxidation of catechols in competition with 2-mercaptobenzoxazole. Mendeleev Communications, 2006, 16, 285-286.	0.6	11
189	Electrochemical oxidation of catechol and 4-tert-butylcatechol in the presence of 1-Methyl-1H-imidazole-2-thiol: Synthesis and kinetic study. Journal of the Iranian Chemical Society, 2008, 5, 712-717.	1.2	11
190	Electrochemical Synthesis of 4-(Dihydroxyphenylthio)-2H-chromen-2-one Derivatives. Chemical and Pharmaceutical Bulletin, 2008, 56, 1562-1566.	0.6	11
191	Electrochemical Oxidation of Catechols in the Presence of Pyrimidine-2-thiol: Application to Electrosynthesis. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 2749-2757.	0.8	11
192	Gold(iii) complexes of 5-methyl-5-(pyridyl)-2,4-imidazolidenedione: synthesis, physicochemical, theoretical, antibacterial, and cytotoxicity investigation. New Journal of Chemistry, 2014, 38, 1199.	1.4	11
193	An efficient, simple, non-catalytic electrosynthesis of new polycyclic benzofuran derivatives. Tetrahedron Letters, 2015, 56, 2141-2144.	0.7	11
194	Electrochemical generation of a Michael acceptor: a green method for the synthesis of 4-amino-3-(phenylsulfonyl)diphenylamine derivatives. New Journal of Chemistry, 2015, 39, 3852-3858.	1.4	11
195	Electroreductive nucleophile acceptor generation. Electrochemical synthesis of N-(4-(dimethylamino)phenyl)benzenesulfonamide. Electrochimica Acta, 2015, 180, 909-913.	2.6	11
196	New insights into electrocatalytic ozone generation using Pt/Ni-Sb-SnO2 and GC/Ni-Sb-SnO2 electrodes. Journal of Electroanalytical Chemistry, 2018, 824, 216-225.	1.9	11
197	An efficient electrochemical method for synthesis of (1 <i>h</i> â€1,2,4â€triazolâ€3â€ylthio)benzenâ€1,2â€diol derivatives. Heteroatom Chemistry, 2007, 18, 644-649.	0.4	10
198	Electrochemically induced Diels–Alder reaction of p-benzoquinone with 1,3-cyclopentadiene. Journal of Electroanalytical Chemistry, 2008, 624, 310-314.	1.9	10

#	Article	IF	CITATIONS
199	Kinetic Study of the Oxidation of Catechols in the Presence of Some Aza-crown Ethers by Digital Simulation of Cyclic Voltammograms. Electroanalysis, 2009, 21, 1099-1106.	1.5	10
200	Estimation of heterogeneous rate constants of reaction of electrochemically generated <i>o</i> â€benzoquinones with various nucleophiles containing thiol group. International Journal of Chemical Kinetics, 2009, 41, 426-431.	1.0	10
201	Electrochemical Oxidation of Catechols in the Presence of Phenyl-Meldrum's Acid. Synthesis and Kinetic Evaluation. Chemical and Pharmaceutical Bulletin, 2010, 58, 23-26.	0.6	10
202	Kinetic Study of the Oxidation of 4-Morpholinoaniline and <i>N,N</i> –Dialkyl- <i>p</i> -phenylenediamines in the Presence of Barbituric Acids Derivatives by Digital Simulation of Cyclic Voltammograms. Journal of the Electrochemical Society, 2012, 159, H792-H799.	1.3	10
203	Electrochemical Synthesis of Aminoquinones through Oxidative Coupling of 4- <i>tert</i> -Butylcatechol and Benzenamines. Journal of the Electrochemical Society, 2014, 161, G33-G35.	1.3	10
204	A facile electrochemical method for the synthesis of new sulfonamide derivatives of potential biological significance. Chinese Chemical Letters, 2014, 25, 593-595.	4.8	10
205	General approach for electrochemical functionalization of glassy carbon surface by in situ generation of diazonium ion under acidic and non-acidic condition with a cascade protocol. Electrochimica Acta, 2014, 139, 270-280.	2.6	10
206	A palladium–phosphine catalytic system as an active and recycable precatalyst for Suzuki coupling in water. Transition Metal Chemistry, 2015, 40, 657-663.	0.7	10
207	Thermodynamic and Electrochemical Oxidation of Some Diamine Derivatives: Experimental and Theoretical Investigation. Journal of the Electrochemical Society, 2015, 162, H877-H883.	1.3	10
208	Electrochemical synthesis of 1-N-phenyl-4-(sulfonyl)benzene-1,2-diamine derivatives: a mild and regioselective protocol. New Journal of Chemistry, 2016, 40, 5442-5447.	1.4	10
209	A green convergent paired electrochemical synthesis of 6H-pyrrolo[3,2,1-de]phenazin-1-amine derivatives and their antibacterial evaluation. Electrochimica Acta, 2016, 214, 147-155.	2.6	10
210	Electrode instead of catalyst and enzyme. A greener protocol for the synthesis of new 2-hydroxyacetamide derivatives containing a 1³-lactone ring. Green Chemistry, 2016, 18, 672-675.	4.6	10
211	Electrochemical study of fast blue BB. A green strategy for sulfination of fast blue BB. New Journal of Chemistry, 2019, 43, 10382-10389.	1.4	10
212	Comparing the performance of the peroxymonosulfate/Mn3O4 and three-dimensional electrochemical processes for methylene blue removal from aqueous solutions: Kinetic studies. Colloids and Interface Science Communications, 2021, 42, 100394.	2.0	10
213	Mechanistic Study of Electrochemical Oxidation of 2,5-Dihydroxybenzoic Acid and 3,4-Dihydroxybenzaldehyde in the Presence of 3-Hydroxy-1H-phenalene-1-one. Chemical and Pharmaceutical Bulletin, 2008, 56, 513-517.	0.6	9
214	Kinetics study of electrochemically induced michael reaction of benzoquinones with triphenylphosphine. Journal of the Iranian Chemical Society, 2010, 7, 260-268.	1.2	9
215	Electrochemical Oxidation of 4-Morpholinoaniline in Nonaqueous Solvents. Journal of the Electrochemical Society, 2012, 159, H680-H684.	1.3	9

Electrochemical Method for the Synthesis of Disulfides of 2-(Benzo[$\langle i \rangle d \langle i \rangle$]thiazol(or) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,62 Td (oxer 1.7, 10 Tf 50,62 Td (oxer 1.7

#	Article	IF	CITATIONS
217	An efficient electrochemical method for the synthesis of N,N,N′,N′-tetraalkyl-4,4′-azodianiline. Journal of Electroanalytical Chemistry, 2014, 720-721, 156-161.	1.9	9
218	Comproportionation and Michael addition reactions of electrochemically generated N,N,N',N'-tetramethyl-1,4-phenylenediamine dication. Synthesis of new unsymmetrical aryl sulfones containing N,N,N',N'-tetramethyl-1,4-phenylenediamine moiety. Journal of Electroanalytical Chemistry, 2015, 759, 144-152.	1.9	9
219	Unsymmetrical Diaryl Sulfones through Electrochemical Oxidation of Fast Violet B in the Presence of Aryl Sulfinic Acids. Journal of the Electrochemical Society, 2016, 163, G211-G218.	1.3	9
220	Electrochemical synthesis of new organic compounds based on the oxidation of 1,4-dihydroxybenzene derivatives in the presence of primary and secondary amines. Comptes Rendus Chimie, 2016, 19, 357-362.	0.2	9
221	A Regioselective and Convergent Paired Electrochemical Synthesis of N,N′-Diphenyl-3-sulfonyl-[1,1′-biphenyl]-4,4′-diamines. Synthesis, 2017, 49, 1555-1560.	1.2	9
222	Electrochemical oxidation of o-phenylenediamine and 1,3 dihydrospiro[benzo[d]imidazole-2,1′-cyclohexane]. A comprehensive study and introducing a novel case of CE mechanism. Electrochimica Acta, 2020, 354, 136700.	2.6	9
223	UIO-66-NH2 Packed Needle Trap for Accurate and Reliable Sampling and Analysis of the Halogenated Volatile Organic Compounds in Air. International Journal of Environmental Analytical Chemistry, 2021, 101, 263-280.	1.8	9
224	Determination of halogenated hydrocarbons in urine samples using a needle trap device packed with Ni/Zn–BTC bi-MMOF <i>via</i> the dynamic headspace method. RSC Advances, 2021, 11, 21537-21547.	1.7	9
225	New insight into the electrochemical reduction of different aryldiazonium salts in aqueous solutions. RSC Advances, 2021, 11, 25811-25815.	1.7	9
226	Synthesis Of Some Novel Silver-Cysteamine Complexes. Molecules, 2000, 5, 1194-1200.	1.7	8
227	Diaryl Sulfones Through Oxidative Coupling of Catechols and Arylsulfinic Acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 1391-1396.	0.8	8
228	One-Pot Synthesis of Highly Conjugated Benzofuran Derivatives Based on Electrochemical Oxidation of Benzenediols in the Presence of Dibenzoylmethane. Chemical and Pharmaceutical Bulletin, 2007, 55, 915-917.	0.6	8
229	Study of the oxidation of some catechols in the presence of 4-amino-3-thio-1,2,4-triazole by digital simulation of cyclic voltammograms. International Journal of Chemical Kinetics, 2007, 39, 340-345.	1.0	8
230	Synthesis, characterization, and electrochemical study of two new macroacyclic Schiff bases and their copper(II) and zinc(II) complexes. Journal of Coordination Chemistry, 2010, 63, 4165-4176.	0.8	8
231	Electrochemical Oxidative Coupling of Hexamethylene-bis-Urazole and Arylsulfinic Acids: Synthesis of bis-Sulfonamide Derivatives. ECS Electrochemistry Letters, 2012, 1, H14-H16.	1.9	8
232	Electrochemical Oxidation of Catechols (=Benzeneâ€1,2â€diols) in the Presence of Benzoylacetonitrile: Synthesis of New Derivatives of 5,6â€Dihydroxybenzofuran. Helvetica Chimica Acta, 2012, 95, 1605-1612.	1.0	8
233	A Green and Safe Galvanostatic Method for the Synthesis of 4-Nitrocatechol in Aqueous Solution. Journal of the Electrochemical Society, 2015, 162, G19-G24.	1.3	8
234	A green electrochemical method for the synthesis of new N,N′-diphenylbenzene-1,4-diamine derivatives. RSC Advances, 2015, 5, 29209-29213.	1.7	8

#	Article	IF	CITATIONS
235	Thermodynamic and electrochemical study of some dihydroxybenzenes in the presence of different nucleophiles. Monatshefte Für Chemie, 2016, 147, 329-339.	0.9	8
236	New Pd/Pt-[60]fullerene complexes of phosphorus ylides as anticancer agents: Cytotoxic investigation and DFT calculations. Journal of Organometallic Chemistry, 2018, 860, 49-58.	0.8	8
237	Cyclic voltammetry-assisted mechanistic evaluation of sulfonamide synthesis. A simple and green method for the synthesis of N-(1-hydroxynaphthalen-2-yl)benzenesulfonamide derivatives. Journal of Electroanalytical Chemistry, 2018, 810, 161-170.	1.9	8
238	A green and template-free electropolymerization of imipramine. The decoration of sponge-like polymer film with gold nanoparticles. Journal of Electroanalytical Chemistry, 2021, 894, 115340.	1.9	8
239	Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 2021, 247, 167841.	1.4	8
240	Monopolar Electro-Coagulation Process for Azo Dye C. I. Acid Red 18 Removal from Aqueous Solutions. Avicenna Journal of Environmental Health Engineering, 2014, 1, .	0.3	8
241	Electrochemical Sulfonylation of 4-tert-Butylcatechol. Synthetic Communications, 2003, 33, 2269-2274.	1.1	7
242	OXIDATIVE COUPLING OF IN-SITU GENERATED o-BENZOQUINONES WITH 4-HYDROXY-6-METHYL-2-PYRONE. Heterocyclic Communications, 2005, 11, .	0.6	7
243	Electrochemical oxidation of catechols in the presence of ethylâ€⊉â€chloroacetoacetate. Synthesis and mechanistic study. Journal of Heterocyclic Chemistry, 2006, 43, 1673-1677.	1.4	7
244	An Environmentally Friendly Electrochemical Method for Synthesis of Benzofuranoquinone Derivatives. Chemical and Pharmaceutical Bulletin, 2007, 55, 1198-1202.	0.6	7
245	Electrochemical Oxidation of 4-Methylcatechol in the Presence of β-Diketones. Bulletin of the Chemical Society of Japan, 2008, 81, 1505-1511.	2.0	7
246	Electrochemically induced oxidative cyclization of 2,3â€dihydroxypyridine. Synthesis of a novel highly oxygenated heterocyclic compound. Journal of Physical Organic Chemistry, 2012, 25, 511-514.	0.9	7
247	Electrochemical Oxidation and Voltammetric Determination of Captopril Using 4,4 [′] -Biphenol as a Homogeneous Mediator. Journal of the Electrochemical Society, 2014, 161, H284-H289.	1.3	7
248	Electrografting of 4â€ <i>tert</i> â€Butylcatechol on GC Electrode. Selective Electrochemical Determination of Homocysteine. Electroanalysis, 2015, 27, 2738-2744.	1.5	7
249	Electrochemical oxidation and adsorption of hematoxylin at glassy carbon electrode in various pH values. Journal of the Iranian Chemical Society, 2015, 12, 325-333.	1.2	7
250	Kinetic study on electrochemical oxidation of catechols in the presence of cycloheptylamine and aniline: Experiments and digital simulation. Journal of Chemical Sciences, 2016, 128, 1887-1894.	0.7	7
251	A Green C-C Bond Formation Reaction betweenN,N′-Diphenylbenzene-1,4-diamine and Michael Donors: A Convergent Paired Strategy. Journal of the Electrochemical Society, 2016, 163, G75-G78.	1.3	7
252	Mechanistic Study of Electrochemical Oxidation of 4-Morpholinoaniline in Aqueous Solution: Experimental and Theoretical Studies. Journal of the Electrochemical Society, 2016, 163, H234-H239.	1.3	7

#	Article	IF	CITATIONS
253	Electrochemical oxidation of some catechol derivatives in the presence of some betadicetone derivatives: mechanistic and thermodynamic study. Journal of the Iranian Chemical Society, 2017, 14, 873-882.	1.2	7
254	Fabrication of a novel electrochemical sensor for the determination of water in some organic solvents based on naphthalene conducting polymers. New Journal of Chemistry, 2018, 42, 14926-14932.	1.4	7
255	Electrolyte-free paired electrosynthesis of some pyrimidine derivatives using flow electrochemistry as a powerful technology. Journal of Electroanalytical Chemistry, 2020, 857, 113746.	1.9	7
256	Electrochemical study of 4-chloroaniline in a water/acetonitrile mixture. A new method for the synthesis of 4-chloro-2-(phenylsulfonyl)aniline and <i>N</i> -(4-chlorophenyl)benzenesulfonamide. RSC Advances, 2020, 10, 31563-31569.	1.7	7
257	Electroâ€Oxidation of 3,4â€Dihydroxybenzoic Acid in the Presence of 6â€Methylâ€1,2,4â€Triazineâ€3â€Thioneâ€ Unique Synthesis of 7 <i>H</i> â€Thiazolo[3,2â€ <i>b</i>]â€1,2,4â€Triazinâ€7â€One Derivative in Aqueous Media. Journal of the Chinese Chemical Society, 2007, 54, 1163-1166.		6
258	A convergent paired electrochemical synthesis of new heterocyclic compounds. Reaction of benzoquinones with 3-Amino-4-hydroxycoumarin. Journal of the Iranian Chemical Society, 2011, 8, 48-58.	1.2	6
259	Electrochemical synthesis of new coumarin derivatives of potential biological significance. Journal of Electroanalytical Chemistry, 2012, 681, 11-15.	1.9	6
260	A Green Electrochemical Method for the Synthesis of Acetaminophen Derivatives. Journal of the Electrochemical Society, 2014, 161, H75-H78.	1.3	6
261	Electrosynthesis and electrochemical characteristics of 2,2′-(4,5-dihydroxy-3-methoxy-1,2-phenylene)bis(3-oxo-3-phenylpropanenitrile): application as a mediator for determination of hydroxylamine at a carbon nanotube modified electrode surface. Analytical Methods. 2014. 6. 5999-6008.	1.3	6
262	Insight into the electrochemical oxidation of N,N-dialkyl-p-phenylenediamines in the presence of malononitrile and methyl cyanoacetate. A convergent paired electrochemical method for the synthesis of cyanide and dicyanide derivatives of phenylcarbonimidoyl. Journal of Electroanalytical Chemistry, 2016, 775, 299-305.	1.9	6
263	Electrochemical behavior of 2-aminodiphenylamine and efficient factors on the site-selectivity of sulfonylation reaction: Experimental and theoretical studies. Electrochimica Acta, 2016, 222, 845-855.	2.6	6
264	A comprehensive study on electrochemical oxidation of 2-acetamidophenol (ortho-acetaminophen). A green galvanostatic method for the synthesis of di-arylsulfonyl-2-acetamidophenol derivatives. Electrochimica Acta, 2017, 248, 376-387.	2.6	6
265	Pd/Pt metallacyclopropa[60]fullerene complexes bearing versatile phosphorous ylide ligands; a comprehensive multi-spectroscopic, electrochemistry, theoretical and catalytic studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 204, 416-424.	2.0	6
266	Electrochemical synthesis of a new phosphonium betaine. Kinetic evaluation and antibacterial susceptibility. Electrochimica Acta, 2019, 324, 134893.	2.6	6
267	Electrochemical Device for the Synthesis of Fe ₃ O ₄ Magnetic Nanoparticles. Journal of the Electrochemical Society, 2019, 166, E1-E6.	1.3	6
268	Progress and perspectives of electrochemical insights for C–H and N–H sulfonylation. New Journal of Chemistry, 2021, 45, 18246-18267.	1.4	6
269	A facile method for the synthesis of thiocoumestan derivatives. Journal of Heterocyclic Chemistry, 2009, 46, 1000-1002.	1.4	5
270	Electro-inorganic synthesis: a convergent paired electrochemical synthesis and voltammetric studies of copper(II)-2-aminophenol derivatives. Journal of the Iranian Chemical Society, 2012, 9, 693-704.	1.2	5

#	Article	IF	CITATIONS
271	An Efficient Electrochemical Method for the Synthesis of Quinoxaline-dione Derivatives from Oxidation of Catechols in the Presence ofN1,N2-dibenzylethane-1,2-diamine. Journal of the Electrochemical Society, 2013, 160, G32-G36.	1.3	5
272	Green and efficient one-pot Diels-Alder electro-organic cyclization reaction of 1,2-bis(bromomethyl)benzene with naphthoquinone derivatives. Journal of Electroanalytical Chemistry, 2015, 759, 190-193.	1.9	5
273	Electrochemical evidences for the reaction of <i>N</i> -acetyl- <i>p</i> -benzoquinone-imine with organosulfur compounds contained in garlic and onion extracts. Treatment of acetaminophen poisoning using garlic and onion extracts. Journal of Sulfur Chemistry, 2015, 36, 1-8.	1.0	5
274	Electrochemical Oxidation ofp-Aminoacetanilide in Aqueous Solutions: A Green Electrochemical Protocol for the Synthesis of Azo Dyes. Journal of the Electrochemical Society, 2016, 163, G145-G152.	1.3	5
275	Solvent effect on the electrochemical oxidation of N,N,N′,N′-tetramethyl-1,4-phenylenediamine. New insights into the correlation of electron transfer kinetics with dynamic solvent effects. Journal of Molecular Liquids, 2018, 253, 127-135.	2.3	5
276	New Pd/Pt(<scp>ii</scp>) complexes as unsymmetrical ylide-based chemotherapeutic agents: synthesis, characterization, biological activity, electrochemical, and X-ray studies. New Journal of Chemistry, 2018, 42, 8968-8978.	1.4	5
277	Online monitoring of electrochemical synthesis of 4-nitrocatechol using fast Fourier transform continuous cyclic voltammetry (FFTCCV) in flow system. Electrochimica Acta, 2018, 259, 694-701.	2.6	5
278	Electrochemical synthesis of some 2-aminobenzofuran-3-carbonitrile and 2-aminobenzofuran-3-carboxylate derivatives: product diversity by changing the applied current density. New Journal of Chemistry, 2018, 42, 14876-14882.	1.4	5
279	Electro-organic synthesis of dibenzylaminodioxocyclohexa-dienecarboxylic acids. Arkivoc, 2006, 2006, 129-136.	0.3	5
280	Electrooxidation of Iodide in the Presence of 4-Hydroxycoumarin: Application to a Simple Coulometric Titration of 4-Hydroxycoumarin. Analytical Sciences, 2003, 19, 937-939.	0.8	4
281	Electrochemical Reduction of 1,2â€Di(<i>p</i> â€ŧolylimino)ethane and 1,2â€Di(2,4â€dimethylphenylimino)ethane in Dimethylformamide. Chinese Journal of Chemistry, 2007, 25, 1577-1580.	2.6	4
282	Estimation of homogeneous rate constants of reaction of electrochemically generated <i>ortho</i> â€benzoquinones with 1,3â€indandione. International Journal of Chemical Kinetics, 2007, 39, 605-613.	1.0	4
283	Electrochemical synthesis and study of coordination compounds part 1: tin(II) catechol complexes. Journal of Coordination Chemistry, 2008, 61, 1744-1750.	0.8	4
284	Measurement of Dissolved Oxygen in Biological Fluids by Using a Modified Carbon Paste Electrode. Electroanalysis, 2009, 21, 201-205.	1.5	4
285	Electrochemical pyridination of hydroquinone in aqueous solution. Monatshefte Für Chemie, 2011, 142, 1235-1239.	0.9	4
286	A promising green method in cyclization reaction. Oxidation of 3-methylcatechol in the presence of 1,10-phenanthroline. Chinese Chemical Letters, 2011, 22, 1067-1070.	4.8	4
287	A facile and one-pot electrochemical method for the synthesis of a new anthraquinonethioether. Chinese Chemical Letters, 2012, 23, 553-556.	4.8	4
288	Electrochemical Oxidation of 1,2-Dihydropyridazine-3,6-dione in the Presence of Arylsulfinic Acids: A Green Method for the Synthesis of New Sulfonamides. Journal of the Electrochemical Society, 2013, 160, G93-G95.	1.3	4

#	Article	IF	CITATIONS
289	Mechanistic study of electrochemical oxidation of 2,5-diethoxy-4-morpholinoaniline in aqueous solutions: hydrolysis, trimerization, and hydroxylation processes. Monatshefte Für Chemie, 2015, 146, 1495-1502.	0.9	4
290	A green approach for the synthesis of bis (substituted sulfabenzamide) para-benzoquinone based on the reaction of sulfabenzamide with electrochemically generated para-benzoquinone and its antibacterial evaluation. New Journal of Chemistry, 2015, 39, 6734-6737.	1.4	4
291	Chemical and Electrochemical Syntheses of Benzo[<i>b</i>](1,4)â€diazepineâ€7,8â€diones. Journal of Heterocyclic Chemistry, 2015, 52, 197-200.	1.4	4
292	New insights into the electrochemical oxidation of aniline-dimers in non-aqueous solutions, kinetic parameters obtained by Koutecký-Levich method. Journal of Electroanalytical Chemistry, 2016, 782, 207-214.	1.9	4
293	New Rh(III) complexes of 5â€methylâ€5â€(pyridyl)â€2,4â€imidazolidenedione: Synthesis, Xâ€ray structure, electrochemical study and catalytic behaviour for hydrogenation of ketones. Applied Organometallic Chemistry, 2017, 31, e3716.	1.7	4
294	Mechanistic and Thermodynamic Study of Electrochemical Oxidation of 4-Morpholinoaniline in the Presence of Different Nucleophiles. Journal of the Electrochemical Society, 2017, 164, H946-H951.	1.3	4
295	Green electrochemical synthesis of silver sulfadiazine microcrystals. RSC Advances, 2019, 9, 24105-24109.	1.7	4
296	Pyridiniumâ€Facilitated CO ₂ Electroreduction on Pt Nanowire: Enhanced Electrochemical Performance in CO ₂ Conversion. Environmental Progress and Sustainable Energy, 2019, 38, 112-117.	1.3	4
297	Comparative evaluation of the efficiency of batch and flow electrochemical cells in the synthesis of a new derivative of 2-thenoyltrifluoroacetone. Journal of Electroanalytical Chemistry, 2020, 879, 114796.	1.9	4
298	Electrochemical synthesis of new sulfone and sulfonamide derivatives. A green method based on the electrolysis of 2-amino-5-nitrophenol. Electrochimica Acta, 2021, 395, 139223.	2.6	4
299	Electrochemical Studies of Newly Synthesized 1,4-Dihydropyridine-Based Hexahydroquinoline Derivatives. Journal of the Electrochemical Society, 2020, 167, 125502.	1.3	4
300	Electro-Organic Synthesis of New Esculetin Derivatives Based on 1,6-Conjugate Addition. Current Organic Chemistry, 2013, 17, 848-852.	0.9	4
301	Investigation of Electrochemically Induced Michael Addition Reactions of Ortho- and Para-banzoquinones with 2-Mercaptobenzimidazole: Application to Electrosynthesis. Letters in Organic Chemistry, 2014, 11, 398-402.	0.2	4
302	A comprehensive study on opium pharmaceutical wastewater treatment in laboratory and semi-industrial scales. Journal of Water Process Engineering, 2021, 44, 102353.	2.6	4
303	Co ₃ O ₄ @Zn-BTC MOF as a novel nano-photocatalyst for degradation of toluene from ambient air. International Journal of Environmental Analytical Chemistry, 0, , 1-19.	1.8	4
304	Introducing CEC′ mechanism: Electrochemical oxidation of 4-methylesculetin–boric acid complex in the presence of glutathione. Electrochimica Acta, 2013, 111, 909-915.	2.6	3
305	A Facile and Efficient Oneâ€Pot Electrochemical Synthesis of Thiazole Derivatives in Aqueous Solution. Helvetica Chimica Acta, 2015, 98, 210-223.	1.0	3
306	Electrochemical Study of 4-Nitroso- <i>N,N</i> -dimethylaniline in Nonaqueous Solvents. Journal of the Electrochemical Society, 2016, 163, G133-G137.	1.3	3

#	Article	IF	CITATIONS
307	Electrochemical study of dibenzo-xanthene and dihydrobenzochromono pyrazole derivatives. Electrochimica Acta, 2019, 326, 134990.	2.6	3
308	Direct Electrochemical Dimerization of <i>N,N′</i> -Diphenylbenzidine. Journal of the Electrochemical Society, 2019, 166, G47-G53.	1.3	3
309	Application of hydroxyapatite adsorbent packed in needle trap device for sensitive determination of trace levels of phenolic compounds in the air. Chinese Journal of Analytical Chemistry, 2021, 49, 27-35.	0.9	3
310	Investigation of the electrochemical behavior of some catechols in the presence of 4,6-dimethylpyrimidine-2-thiol. Arkivoc, 2008, 2008, 43-52.	0.3	3
311	An eco-friendly electrochemical process for the formation of a new desloratadine derivative and its antibacterial susceptibility. Report of a new type of ortho-quinhydrone complex. Electrochimica Acta, 2022, 421, 140518.	2.6	3
312	Development of a Needle Trap Device Packed with HKUST-1 Sorbent for Sampling and Analysis of BTEX in Air. Chemistry and Chemical Technology, 2022, 16, 314-327.	0.2	3
313	A comprehensive study on electrochemical oxidation of phenothiazine in water-acetonitrile mixture: Electrosynthesis of phenothiazine dimers. Electrochimica Acta, 2022, 425, 140706.	2.6	3
314	Kinetics and Mechanistic Study of Acetaminophen aptopril Interaction by Electrochemical Methods. Electroanalysis, 2011, 23, 784-790.	1.5	2
315	Electrochemical Oxidation of 2,3-dihydrophthalazine-1,4-dione in the Presence of Indole Derivatives. Journal of the Electrochemical Society, 2013, 160, G156-G158.	1.3	2
316	Oxidative Diels–Alder reaction of 2,5-dihydroxybenzoic acid with 1,3-cyclopentadiene. Chinese Chemical Letters, 2013, 24, 205-207.	4.8	2
317	Electron transfer of some redox systems through physisorbed 4-methylesculetin: A catalytic behavior toward oxidation of catechols. Journal of Electroanalytical Chemistry, 2013, 696, 45-51.	1.9	2
318	An unexpected oxidative decarboxylation reaction of 2,3-dihydroxybenzoic acid in the synthesis of new dibenzyltetrahydroquinoxalinediones. Tetrahedron, 2014, 70, 4361-4366.	1.0	2
319	Electrochemically induced cross-dehydrogenative coupling (CDC) reaction. An efficient electrochemical method for the synthesis of dicoumarols. RSC Advances, 2014, 4, 50365-50368.	1.7	2
320	A non-covalent complex based on catechol–benzoxazole moieties: electrochemical synthesis and characterization. RSC Advances, 2014, 4, 24207-24210.	1.7	2
321	DFT study of HOMO structural map of Î ² -diketones and Î ² -ketoesters; towards prediction of electrochemical oxidation. Molecular Simulation, 2015, 41, 237-244.	0.9	2
322	1,2,4-Triazole-3-thiol-protected silver-nanoparticles as a platform for ECE electrochemical reaction. Electrochemistry Communications, 2017, 82, 56-60.	2.3	2
323	Electrochemical Study of 1,5-Diaminonaphthalene in Aqueous Solution: Assessing Electrochemistry as a Green Synthetic Tool for the Synthesis of 4-Imino-4 <i>H</i> -dibenzo[<i>a</i> , <i>h</i>]phenoxazin-11-ol. Journal of the Electrochemical Society, 2017, 164, G87-G91.	1.3	2
324	Spectroscopic and molecular modeling studies on the interactions of some benzofuran derivatives with BSA. Monatshefte FÃ1⁄4r Chemie, 2017, 148, 1887-1896.	0.9	2

#	Article	IF	CITATIONS
325	Electrochemical Preparation of the Ti/Ni-Sb-SnO2 for Phenol Removal by In-situ Generated Ozone. Oriental Journal of Chemistry, 2018, 34, 757-763.	0.1	2
326	Enhancement of biological sludge dewaterability by a bipolar electro-dewatering system: process modeling and optimization using CCD-genetic algorithm method. Biomass Conversion and Biorefinery, 0, , 1.	2.9	2
327	Introducing a New Michael Type Acceptor: A Green Strategy for the Synthesis of Organic Compounds. Journal of the Electrochemical Society, 2020, 167, 125501.	1.3	2
328	Electrochemical Synthesis and Kinetic Evaluation of Electrooxidation of Acetaminophen in the Presence of Antidepressant Drugs. Iranian Journal of Pharmaceutical Research, 2015, 14, 1115-22.	0.3	2
329	Convergent paired electrochemical synthesis of symmetric dispiro and spiropyrimidine derivatives based on reduction of para-nitrophenol. Journal of Electroanalytical Chemistry, 2022, 904, 115946.	1.9	2
330	Electrocatalytic generation of hydrogen peroxide using carbon electrode modified with 5H-dibenzo[b,i]xanthene-5,7,12,14(13H)-tetraone derivative. A green and efficient method. Electrochimica Acta, 2022, 407, 139885.	2.6	2
331	A green protocol for the electrochemical synthesis of a fluorescent dye with antibacterial activity from imipramine oxidation. Scientific Reports, 2022, 12, 4921.	1.6	2
332	Kinetic study of electrochemically induced Michael reaction of 1,4-dihydroxyanthraquinone with acetylacetone and benzoylacetone. Chinese Chemical Letters, 2013, 24, 1008-1010.	4.8	1
333	Kinetic study of electrochemically induced Michael addition reaction of <i>o</i> -benzoquinone with CH-acid nucleophiles. Progress in Reaction Kinetics and Mechanism, 2013, 38, 95-104.	1.1	1
334	Kinetic and mechanistic study of drug–drug interaction between acetaminophen and β-lactam antibiotics. Progress in Reaction Kinetics and Mechanism, 2013, 38, 213-219.	1.1	1
335	A Kinetic Study on Electrooxidation of Propyl-Thiouracil: An Anti-Hyperthyroid Drug by Potassium Iodide. Journal of the Electrochemical Society, 2013, 160, H710-H714.	1.3	1
336	Kinetic and Mechanistic Investigation of Electrochemical Oxidation of Hydroquinones in the Absence and Presence of 2-acetyl-gamma-butyrolactone. Progress in Reaction Kinetics and Mechanism, 2014, 39, 391-403.	1.1	1
337	Efficient synthesis of diethyltetrahydroquinoxalinediones. Russian Journal of Electrochemistry, 2015, 51, 56-62.	0.3	1
338	Electrochemical Synthesis of Cu (II) Coordination Polymer Coatings Based on 2,2′-Thiodiacetic Acid and 1,2,4,5-Benzenetetracarboxylate. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 376-383.	1.9	1
339	Electrochemical Synthesis of a New Derivative of 1,4-Dihydroxybenzene: Embedded Nucleophile in the Structure of Electrophile. Journal of the Electrochemical Society, 2018, 165, H667-H672.	1.3	1
340	One-step electrochemically driven production of aza macrocycle-based pseudo-cryptand: An accessible route for creating of diverse cryptand-resembles compounds. Electrochimica Acta, 2019, 296, 102-111.	2.6	1
341	Electrochemical Study of Propofol (2,6-diisopropylphenol): A Novel Insight into the Dimerization of Propofol. Journal of the Electrochemical Society, 2021, 168, 055502.	1.3	1
342	Electrochemically Induced Diels-Alder Reactions of Some Substituted o-quinones with 1,3-cyclopentadiene: An Interesting Finding in the Diels–Alder Reactions. Journal of the Electrochemical Society, 2020, 167, 155516.	1.3	1

#	Article	IF	CITATIONS
343	Electrochemical Sulfonylation of 4-tert-Butylcatechol ChemInform, 2003, 34, no.	0.1	0
344	A Facile Electrochemical Method for Synthesis of New Benzofuran Derivatives ChemInform, 2004, 35, no.	0.1	0
345	An Efficient Conversion of Catechols into 6H-Benzofuro[3,2-c][1]benzopyran-6-one Derivatives ChemInform, 2005, 36, no.	0.1	0
346	Electrochemical Oxidation of Iodide in the Presence of Benzenesulfinic Acids and Its Application to the Quasi-Catalytic Determination of Benzenesulfinic Acids. Journal of Analytical Chemistry, 2005, 60, 528-532.	0.4	0
347	Oxidative ring cleavage of 2,3-dihydrophthalazine-1,4-dione in aqueous and non-aqueous solutions: Electrochemical and kinetic studies. Journal of Chemical Sciences, 2014, 126, 1923-1928.	0.7	0
348	A Green Electrochemical Method for the Synthesis of 2-(phenylthio)-1 <i>H</i> -benzo[d]imidazole Derivatives. Journal of the Electrochemical Society, 2018, 165, G133-G138.	1.3	0
349	One-pot electrochemical synthesis of highly symmetric and conjugated coumarin derivative. Journal of the Iranian Chemical Society, 2018, 15, 2669-2674.	1.2	0
350	Theoretical and experimental investigation on the electrochemical properties, structural and spectroscopic parameters of 6,7-dihydroxy-9-thia-1,4a-diaza fluoren-2-one (DTDFO). Journal of Sulfur Chemistry, 2019, 40, 598-613.	1.0	0
351	Electrochemical oxidation of 2,5-diethoxy 4-morpholinoaniline in the presence of thiobarbituric acid: present an ECCCEC Mechanism. Journal of the Iranian Chemical Society, 2019, 16, 2177-2185.	1.2	0
352	Electrochemical Oxidation of 2,3-Dihydroxypyridine in the Presence of Benzenesulfinic Acid: A Green Method for the Synthesis of a Novel Heterocycle Dye. Journal of the Electrochemical Society, 2021, 168, 075501.	1.3	0
353	A Green Electrochemical Method for the Synthesis of New Sulfonamide and Disulfonamide Derivatives Based on the Oxidation of Phenylhydrazine Derivatives and Evaluation of their Antibacterial Activity. Journal of the Electrochemical Society. 0	1.3	0