Christophe Coutanceau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/222125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in the development of direct alcohol fuel cells (DAFC). Journal of Power Sources, 2002, 105, 283-296.	4.0	961
2	Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochimica Acta, 2004, 49, 3901-3908.	2.6	577
3	On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. Journal of Electroanalytical Chemistry, 2004, 563, 81-89.	1.9	498
4	Direct ethanol fuel cell (DEFC): Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. Journal of Power Sources, 2006, 158, 18-24.	4.0	446
5	Development of anode catalysts for a direct ethanol fuel cell. Journal of Applied Electrochemistry, 2004, 34, 439-446.	1.5	346
6	Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Applied Catalysis B: Environmental, 2010, 93, 354-362.	10.8	322
7	How bimetallic electrocatalysts does work for reactions involved in fuel cells?. Electrochimica Acta, 2005, 50, 5118-5125.	2.6	266
8	Electrochemical Valorisation of Glycerol. ChemSusChem, 2012, 5, 2106-2124.	3.6	248
9	Self-Supported Pd _{<i>x</i>} Bi Catalysts for the Electrooxidation of Glycerol in Alkaline Media. Journal of the American Chemical Society, 2014, 136, 3937-3945.	6.6	247
10	Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. Journal of Electroanalytical Chemistry, 2005, 577, 223-234.	1.9	245
11	Electrocatalysis for the direct alcohol fuel cell. Topics in Catalysis, 2006, 40, 111-121.	1.3	237
12	Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts—effect of the presence of methanol. Electrochimica Acta, 2004, 49, 4513-4521.	2.6	228
13	Investigation of Ternary Catalysts for Methanol Electrooxidation. Journal of Applied Electrochemistry, 2001, 31, 379-386.	1.5	227
14	A new etching environment (FeF ₃ /HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs.Âwater. Journal of Materials Chemistry A, 2017, 5, 22012-22023.	5.2	227
15	Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film. Electrochimica Acta, 2000, 46, 579-588.	2.6	209
16	Development of electrocatalysts for solid alkaline fuel cell (SAFC). Journal of Power Sources, 2006, 156, 14-19.	4.0	204
17	Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles. Journal of Electroanalytical Chemistry, 2005, 576, 305-313.	1.9	203
18	Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts. Journal of Electroanalytical Chemistry, 2007, 601, 169-180.	1.9	176

CHRISTOPHE COUTANCEAU

#	Article	IF	CITATIONS
19	Adsorption of CO poison on fuel cell nanoparticle electrodes from methanol solutions: a radioactive labeling study. Journal of Electroanalytical Chemistry, 2001, 511, 55-64.	1.9	167
20	Electroactivity of tin modified platinum electrodes for ethanol electrooxidation. Journal of Power Sources, 2007, 167, 1-10.	4.0	161
21	On the structure effects of bimetallic PtRu electrocatalysts towards methanol oxidation. Journal of Electroanalytical Chemistry, 2003, 554-555, 407-415.	1.9	160
22	Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell. Electrochimica Acta, 2007, 52, 6997-7006.	2.6	158
23	Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Applied Catalysis B: Environmental, 2011, 110, 40-49.	10.8	157
24	Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds. Electrochimica Acta, 2008, 53, 6865-6880.	2.6	151
25	Electrooxidation of Sodium Borohydride at Pd, Au, and Pd _{<i>x</i>} Au _{1â^'<i>x</i>} Carbon-Supported Nanocatalysts. Journal of Physical Chemistry C, 2009, 113, 13369-13376.	1.5	151
26	Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 419-429.	1.5	150
27	Clean hydrogen generation through the electrocatalytic oxidation ofÂethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode. Journal of Power Sources, 2014, 245, 927-936.	4.0	146
28	Acid properties of dealuminated beta zeolites studied by IR spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1661-1665.	1.7	140
29	Electro-oxidation of CO _{chem} on Pt Nanosurfaces: Solution of the Peak Multiplicity Puzzle. Langmuir, 2012, 28, 3658-3663.	1.6	122
30	Synthesis, characterization and electrocatalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR). Electrochimica Acta, 2005, 50, 4117-4127.	2.6	110
31	Tailoring of RuO2 nanoparticles by microwave assisted "Instant method―for energy storage applications. Journal of Power Sources, 2011, 196, 4044-4053.	4.0	109
32	Preparation of Pt–Ru bimetallic anodes by galvanostatic pulse electrodeposition: characterization and application to the direct methanol fuel cell. Journal of Applied Electrochemistry, 2004, 34, 61-66.	1.5	104
33	Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings. Electrochemistry Communications, 2009, 11, 859-861.	2.3	99
34	How does α-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (orr)?. Journal of Electroanalytical Chemistry, 2006, 590, 100-110.	1.9	98
35	Selective Electrooxidation of Glycerol Into Value-Added Chemicals: A Short Overview. Frontiers in Chemistry, 2019, 7, 100.	1.8	98
36	Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen. Science Advances, 2017, 3, e1600542.	4.7	92

#	Article	IF	CITATIONS
37	PdAu/C catalysts prepared by plasma sputtering for the electro-oxidation of glycerol. Applied Catalysis B: Environmental, 2011, 107, 372-379.	10.8	88
38	Promising anode candidates for direct ethanol fuel cell: Carbon supported PtSn-based trimetallic catalysts prepared by B¶nnemann method. International Journal of Hydrogen Energy, 2013, 38, 6830-6841.	3.8	88
39	Title is missing!. Journal of Applied Electrochemistry, 2001, 31, 945-952.	1.5	85
40	Influence of operational parameters and of catalytic materials on electrical performance of Direct Glycerol Solid Alkaline Membrane Fuel Cells. Journal of Power Sources, 2011, 196, 4965-4971.	4.0	83
41	Highly efficient and selective electrooxidation of glucose and xylose in alkaline medium at carbon supported alloyed PdAu nanocatalysts. Applied Catalysis B: Environmental, 2019, 243, 641-656.	10.8	82
42	Electrochemical conversion of alcohols for hydrogen production: a short overview. Wiley Interdisciplinary Reviews: Energy and Environment, 2016, 5, 388-400.	1.9	80
43	Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC). Journal of Power Sources, 2006, 162, 66-73.	4.0	78
44	Mechanism of oxygen electroreduction at polypyrrole electrodes modified by cobalt phthalocyanine. Journal of Electroanalytical Chemistry, 1994, 379, 389-397.	1.9	76
45	Conducting polymer electrodes modified by metal tetrasulfonated phthalocyanines: Preparation and electrocatalytic behaviour towards dioxygen reduction in acid medium. Electrochimica Acta, 1995, 40, 2739-2748.	2.6	75
46	In situ infrared (FTIR) study of the borohydride oxidation reaction. Electrochemistry Communications, 2009, 11, 223-226.	2.3	71
47	Electrocatalytic reduction of dioxygen at macrocycle conducting polymer electrodes in acid media. Journal of Electroanalytical Chemistry, 1997, 426, 117-123.	1.9	67
48	Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4. Electrochimica Acta, 2010, 56, 580-591.	2.6	67
49	Nickel cobalt hydroxide nanoflakes as catalysts for the hydrogen evolution reaction. Applied Catalysis B: Environmental, 2013, 136-137, 1-8.	10.8	67
50	Effect of potential cycling on structure and activity of Pt nanoparticles dispersed on different carbon supports. Electrochimica Acta, 2008, 53, 7157-7165.	2.6	66
51	How do Bi-modified palladium nanoparticles work towards glycerol electrooxidation? An in situ FTIR study. Electrochimica Acta, 2015, 176, 705-717.	2.6	65
52	New findings on CO electrooxidation at platinum nanoparticle surfaces. Electrochemistry Communications, 2008, 10, 1703-1707.	2.3	64
53	Methoxy methane (dimethyl ether) as an alternative fuel for direct fuel cells. Journal of Power Sources, 2006, 157, 318-324.	4.0	63
54	Influence of surfactant removal by chemical or thermal methods on structure and electroactivity of Pt/C catalysts prepared by water-in-oil microemulsion. Journal of Electroanalytical Chemistry, 2007, 602, 226-236.	1.9	63

#	Article	IF	CITATIONS
55	Selective Electrooxidation of Glycerol to Formic Acid over Carbon Supported Ni _{1–<i>x</i>} M _{<i>x</i>} (M = Bi, Pd, and Au) Nanocatalysts and Coelectrolysis of CO ₂ . ACS Applied Energy Materials, 2020, 3, 8725-8738.	2.5	63
56	Colloidal Syntheses of Shape- and Size-Controlled Pt Nanoparticles for Electrocatalysis. Electrocatalysis, 2012, 3, 75-87.	1.5	62
57	Microwave assisted polyol method for the preparation of Pt/C, Ru/C and PtRu/C nanoparticles and its application in electrooxidation of methanol. Journal of Power Sources, 2012, 214, 33-39.	4.0	62
58	Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation. Journal of Power Sources, 2011, 196, 920-927.	4.0	61
59	Nano-structured Pd-Sn catalysts for alcohol electro-oxidation in alkaline medium. Electrochemistry Communications, 2015, 57, 48-51.	2.3	61
60	Electrochemical Behavior of Unsupported Shaped Palladium Nanoparticles. Langmuir, 2015, 31, 1605-1609.	1.6	61
61	Development of materials for mini DMFC working at room temperature for portable applications. Journal of Power Sources, 2006, 160, 334-339.	4.0	60
62	Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation. Journal of Power Sources, 2007, 172, 613-622.	4.0	60
63	Development of Bismuthâ€Modified PtPd Nanocatalysts for the Electrochemical Reforming of Polyols into Hydrogen and Valueâ€Added Chemicals. ChemElectroChem, 2016, 3, 1694-1704.	1.7	60
64	A thermogravimetric analysis/mass spectroscopy study of the thermal and chemical stability of carbon in the Pt/C catalytic system. Carbon, 2010, 48, 2244-2254.	5.4	54
65	Glycerol electrooxidation on self-supported Pd1Snx nanoparticules. Applied Catalysis B: Environmental, 2015, 176-177, 429-435.	10.8	54
66	Preparation and characterization of supported Ruxlr(1-x)O2 nano-oxides using a modified polyol synthesis assisted by microwave activation for energy storage applications. Applied Catalysis B: Environmental, 2017, 200, 493-502.	10.8	54
67	A Systematic <i>in Situ</i> Infrared Study of the Electrooxidation of C3 Alcohols on Carbon-Supported Pt and Pt–Bi Catalysts. Journal of Physical Chemistry C, 2016, 120, 7155-7164.	1.5	53
68	Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC). Electrochimica Acta, 2012, 60, 112-120.	2.6	52
69	Plasma based platinum nanoaggregates deposited on carbon nanofibers improve fuel cell efficiency. Applied Physics Letters, 2007, 90, 223119.	1.5	50
70	Bi-modified palladium nanocubes for glycerol electrooxidation. Electrochemistry Communications, 2013, 34, 335-338.	2.3	50
71	Oxygen reduction reaction at binary and ternary nanocatalysts based on Pt, Pd and Au. Electrochimica Acta, 2015, 182, 131-142.	2.6	48
72	Poisoning of Pt/C catalysts by CO and its consequences over the kinetics of hydrogen chemisorption. Applied Catalysis B: Environmental, 2009, 92, 280-284.	10.8	47

#	Article	IF	CITATIONS
73	Application of Pt+RuO2 catalysts prepared by thermal decomposition of polymeric precursors to DMFC. Journal of Power Sources, 2006, 158, 1195-1201.	4.0	44
74	Modification of hydrophobic/hydrophilic properties of Vulcan XC72 carbon powder by grafting of trifluoromethylphenyl and phenylsulfonic acid groups. Carbon, 2010, 48, 2755-2764.	5.4	44
75	High Performance plasma sputtered PdPt fuel cell electrodes with ultra low loading. International Journal of Hydrogen Energy, 2011, 36, 8429-8434.	3.8	44
76	Study of the oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium. Electrochimica Acta, 2008, 53, 3232-3241.	2.6	43
77	Solid polymer fuel cell synthesis by low pressure plasmas: a short review. EPJ Applied Physics, 2006, 34, 151-156.	0.3	41
78	Alternative cathodes based on iron phthalocyanine catalysts for mini- or micro-DMFC working at room temperature. Electrochimica Acta, 2005, 51, 517-525.	2.6	40
79	Mechanism of di(methyl)ether (DME) electrooxidation at platinum electrodes in acid medium. Journal of Applied Electrochemistry, 2006, 36, 441-448.	1.5	39
80	Life time test in direct borohydride fuel cell system. Journal of Power Sources, 2009, 193, 779-787.	4.0	39
81	Sulfonated derivatives of polyparaphenylene as proton conducting membranes for direct methanol fuel cell application. Journal of Applied Electrochemistry, 2004, 34, 1159-1170.	1.5	35
82	When cubic nanoparticles get spherical: An Identical Location Transmission Electron Microscopy case study with Pd in alkaline media. Electrochemistry Communications, 2014, 48, 1-4.	2.3	34
83	Dealumination of zeolites. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1997, 94, 765-781.	0.2	34
84	Effects of Temperature and Atmosphere on Carbon-Supported Platinum Fuel Cell Catalysts. Journal of Physical Chemistry C, 2009, 113, 21735-21744.	1.5	33
85	Optimization of a surfactant free polyol method for the synthesis of platinum–cobalt electrocatalysts using Taguchi design of experiments. Journal of Power Sources, 2010, 195, 1569-1576.	4.0	30
86	Synergistic Combination of Plasma Sputtered Pd–Au Bimetallic Nanoparticles for Catalytic Methane Combustion. Journal of Physical Chemistry C, 2011, 115, 11240-11246.	1.5	30
87	Spectroscopic investigations of polymer-modified electrodes containing cobalt phthalocyanine: application to the study of oxygen reduction at such electrodes. Journal of Electroanalytical Chemistry, 1995, 386, 173-182.	1.9	29
88	Modeling and simulation of the anode in direct ethanol fuels cells. Journal of Power Sources, 2008, 180, 283-293.	4.0	29
89	Improvement of the Platinum Nanoparticlesâ^'Carbon Substrate Interaction by Insertion of a Thiophenol Molecular Bridge. Langmuir, 2009, 25, 6543-6550.	1.6	28
90	Modification of Carbon Substrates by Aryl and Alkynyl Iodonium Salt Reduction. Langmuir, 2010, 26, 15002-15009.	1.6	26

#	Article	IF	CITATIONS
91	Evidence of an Eley–Rideal Mechanism in the Stripping of a Saturation Layer of Chemisorbed CO on Platinum Nanoparticles. Langmuir, 2012, 28, 13094-13104.	1.6	26
92	Selective Syntheses and Electrochemical Characterization of Platinum Nanocubes and Nanotetrahedrons/Octahedrons. Electrocatalysis, 2010, 1, 3-6.	1.5	25
93	Modification of palladium surfaces by bismuth adatoms or clusters: Effect on electrochemical activity and selectivity towards polyol electrooxidation. International Journal of Hydrogen Energy, 2014, 39, 15877-15886.	3.8	24
94	Efficient amorphous platinum catalyst cluster growth on porous carbon: A combined molecular dynamics and experimental study. Applied Catalysis B: Environmental, 2015, 162, 21-26.	10.8	24
95	Synthesis of Platinum Nanoparticles by Plasma Sputtering onto Glycerol: Effect of Argon Pressure on Their Physicochemical Properties. Journal of Physical Chemistry C, 2021, 125, 3169-3179.	1.5	23
96	Effect of the annealing atmosphere on the electrochemical properties of RuO2 nano-oxides synthesized by the Instant Method. Applied Catalysis B: Environmental, 2017, 218, 385-397.	10.8	22
97	Polyoxymethylenedimethylether (CH3O(CH2O)nCH3) oxidation on Pt and Pt/Ru supported catalysts. Journal of Power Sources, 2008, 175, 82-90.	4.0	21
98	Do not forget the electrochemical characteristics of the membrane electrode assembly when designing a Proton Exchange Membrane Fuel Cell stack. Electrochimica Acta, 2011, 56, 10406-10423.	2.6	21
99	Remarkably Efficient Carbon-Supported Nanostructured Platinum-Bismuth Catalysts for the Selective Electrooxidation of Glucose and Methyl-Glucoside. Electrocatalysis, 2021, 12, 1-14.	1.5	20
100	Oneâ€step Synthesis and Chemical Characterization of Pt–C Nanowire Composites by Plasma Sputtering. ChemSusChem, 2013, 6, 1168-1171.	3.6	19
101	Changes in COchem oxidative stripping activity induced by reconstruction of Pt (111) and (100) surface nanodomains. Electrochimica Acta, 2013, 92, 438-445.	2.6	19
102	Improvement of the proton exchange membrane fuel cell performances by optimization of the hot pressing process for membrane electrode assembly. Journal of Solid State Electrochemistry, 2014, 18, 1261-1269.	1.2	19
103	Diffusion of adsorbed CO on platinum (100) and (111) oriented nanosurfaces. Electrochemistry Communications, 2012, 22, 109-112.	2.3	18
104	Fluorine-Free Pt Nanocomposites for Three-Phase Interfaces in Fuel Cell Electrodes. ACS Catalysis, 2016, 6, 6993-7001.	5.5	18
105	Insights on the unique electro-catalytic behavior of PtBi/C materials. Electrochimica Acta, 2020, 329, 135161.	2.6	18
106	Green Synthesis and Modification of RuO2 Materials for the Oxygen Evolution Reaction. Frontiers in Energy Research, 2020, 8, .	1.2	17
107	How Stable Are Spherical Platinum Nanoparticles Applied to Fuel Cells?. Journal of Physical Chemistry C, 2018, 122, 11765-11776.	1.5	16
108	Do Women and Men Have the Same Patterns of Multiple Occupational Carcinogenic Exposures? Results from a Cohort of Cancer Patients. Annals of Work Exposures and Health, 2018, 62, 450-464.	0.6	15

#	Article	IF	CITATIONS
109	The influence of adsorbed substances on alkaline methanol electro-oxidation. Electrochimica Acta, 2019, 295, 278-285.	2.6	15
110	Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells. Membranes, 2012, 2, 529-552.	1.4	14
111	The Direct Ethanol Fuel Cell: a Challenge to Convert Bioethanol Cleanly into Electric Energy. , 0, , 1-46.		13
112	Interfacial structure of atomically flat polycrystalline Pt electrodes and modified Sauerbrey equation. Physical Chemistry Chemical Physics, 2017, 19, 21955-21963.	1.3	13
113	Remarkably Stable Nickel Hydroxide Nanoparticles for Miniaturized Electrochemical Energy Storage. ACS Applied Energy Materials, 2020, 3, 7294-7305.	2.5	13
114	Direct chemical deposition of platinum on ionic conductive membranes and evaluation of the electrocatalytic activity. Electrochemistry Communications, 2007, 9, 1097-1101.	2.3	12
115	The role of oxygen on the growth of palladium clusters synthesized by gas aggregation source. Plasma Processes and Polymers, 2019, 16, e1900006.	1.6	12
116	Radioactive Labeling Study and FTIR Measurements of Methanol Adsorption and Oxidation on Fuel Cell Catalysts. Fuel Cells, 2002, 2, 153-158.	1.5	11
117	Determination of the physicochemical characteristics and electrical performance of postsulfonated and grafted sulfonated derivatives of poly(para-phenylene) as new proton-conducting membranes for direct methanol fuel cell. Journal of Applied Polymer Science, 2006, 101, 944-952.	1.3	11
118	Assessment of the beneficial combination of electrochemical and ultrasonic activation of compounds originating from biomass. Ultrasonics Sonochemistry, 2020, 63, 104934.	3.8	11
119	Pt Particles Functionalized on the Molecular Level as New Nanocomposite Materials for Electrocatalysis. Langmuir, 2012, 28, 17832-17840.	1.6	10
120	Chemical Functionalization of Carbon Supported Metal Nanoparticles by Ionic Conductive Polymer via the "Grafting From―Method. Chemistry of Materials, 2013, 25, 3797-3807.	3.2	10
121	Electrocatalytic behaviour towards oxygen reduction reaction of carbon-supported Pt x M y Au z (M) Tj ETQq1 1	0.784314 2.6	rg <mark>BT</mark> /Over <mark>lo</mark>
122	Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source. Frontiers of Chemical Science and Engineering, 2019, 13, 324-329.	2.3	10
123	Characterization of platinum nanoparticles for fuel cell applications by single particle inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2020, 1139, 36-41.	2.6	10
124	Electrochemical hydrogen production from biomass. Current Opinion in Electrochemistry, 2022, 31, 100841.	2.5	10
125	The Electrocatalytic Oxidation of Sodium Borohydride at Palladium and Gold Electrodes for an Application to the Direct Borohydride Fuel Cell. ECS Transactions, 2009, 25, 1413-1421.	0.3	9
126	Molecular dynamics simulations of ternary PtxPdyAuz fuel cell nanocatalyst growth. International Journal of Hydrogen Energy, 2016, 41, 22589-22597.	3.8	9

#	Article	IF	CITATIONS
127	Electrocatalysis of Alcohol Oxidation Reactions at Platinum Group Metals. RSC Energy and Environment Series, 2012, , 1-70.	0.2	9
128	High-temperature DMFC stack operating with non-fluorinated membranes. Fuel Cells Bulletin, 2005, 2005, 12-15.	0.7	8
129	Oxidation and Corrosion of Platinum–Nickel and Platinum–Cobalt Nanoparticles in an Aqueous Acidic Medium. ACS Applied Energy Materials, 2019, 2, 7019-7035.	2.5	8
130	Pd-Shaped Nanoparticles Modified by Gold ad-Atoms: Effects on Surface Structure and Activity Toward Glucose Electrooxidation. Frontiers in Chemistry, 2019, 7, 453.	1.8	8
131	Direct Methanol Fuel Cells: What's New Since Ten Years?. ECS Transactions, 2006, 1, 229-239.	0.3	7
132	High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low Catalytic Metal Loadings. ECS Transactions, 2011, 41, 1151-1159.	0.3	7
133	The potency of Î ³ -valerolactone as bio-sourced polar aprotic organic medium for the electrocarboxlation of furfural by CO2. Journal of Electroanalytical Chemistry, 2019, 848, 113257.	1.9	7
134	Platinum Activity for CO Electrooxidation: from Single Crystal Surfaces to Nanosurfaces and Real Fuel Cell Nanoparticles. Electrocatalysis, 2012, 3, 304-312.	1.5	6
135	Determination of Reaction Mechanisms Occurring at Fuel Cell Electrocatalysts Using Electrochemical Methods, Spectroelectrochemical Measurements and Analytical Techniques. Modern Aspects of Electrochemistry, 2010, , 397-501.	0.2	6
136	Platinum Fuel Cell Nanoparticle Syntheses: Effect on Morphology, Structure and Electrocatalytic Behavior. , 2012, , .		5
137	Pt ₃ MeAu (Me = Ni, Cu) Fuel Cell Nanocatalyst Growth, Shapes, and Efficiency: A Molecular Dynamics Simulation Approach. Journal of Physical Chemistry C, 2019, 123, 29656-29664.	1.5	5
138	Electroreforming of Glucose and Xylose in Alkaline Medium at Carbon Supported Alloyed Pd3Au7 Nanocatalysts: Effect of Aldose Concentration and Electrolysis Cell Voltage. Clean Technologies, 2020, 2, 184-203.	1.9	5
139	Development of Electrocatalysts for the Solid Alkaline Membrane Fuel Cell (SAMFC). ECS Transactions, 2006, 3, 1351-1360.	0.3	4
140	Binary and ternary Pt-based clusters grown in a plasma multimagnetron-based gas aggregation source: electrocatalytic evaluation towards glycerol oxidation. Nanoscale Advances, 2021, 3, 1730-1740.	2.2	4
141	Solid Polymer Fuel Cell synthesis by low pressure plasmas: a short review. EPJ Applied Physics, 2008, 43, 137-137.	0.3	3
142	Electrocatalysis for the Direct Alcohol Fuel Cell. , 0, , 343-373.		3
143	Assisted catalysis: An overview of alternative activation technologies for the conversion of biomass. , 2022, , 365-393.		3
144	The Electrocatalytic Oxidation of Ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): A Way to Produce Clean Hydrogen for PEFC. ECS Transactions, 2013, 58, 1907-1921.	0.3	2

#	Article	IF	CITATIONS
145	Electroreforming of Glucose/Xylose Mixtures On PdAu Based Nanocatalysts. ChemElectroChem, 2022, 9, .	1.7	2
146	Conductive Polymer Grafting Platinum Nanoparticles as Efficient Catalysts for the Oxygen Reduction Reaction: Influence of the Polymer Structure. Electrocatalysis, 2018, 9, 640-651.	1.5	1
147	Dehydration of 2-(2-hydroxyethyl)-pyridine to 2-vinyl-pyridine over solid acid catalysts. Studies in Surface Science and Catalysis, 1997, 108, 563-570.	1.5	0
148	The Direct Oxidation of Formic Acid in a PEMC: A Way to Produce Clean Hydrogen. ECS Meeting Abstracts, 2010, , .	0.0	0
149	Oxygen Activation for Fuel Cell and Electrochemical Process Applications. , 2014, , 216-250.		0
150	Experimental part. , 2020, , 21-35.		0
151	Production of hydrogen by the electrocatalytic oxidation of low-weight compounds (HCOOH, MeOH,) Tj ETQq1 1	0.784314	4 rgBT /Overl
152	Production of hydrogen by the electrocatalytic oxidation of compounds derived from the biomass (glycerol, glucose). , 2020, , 81-111.		0
153	Physique, Plasmas, Matériaux et Énergie : les piles à combustible. , 2013, , 22-26.	0.1	0