
## Vikrant C Aute

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2221166/publications.pdf Version: 2024-02-01



VIRDANT C ALITE

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Multi-Scale and Multi-Physics Analysis, Design Optimization, and Experimental Validation of Heat<br>Exchangers utilizing High Performance, Non-Round Tubes. Applied Thermal Engineering, 2022, , 118965.      | 6.0 | 1         |
| 2  | A tripartite graph based methodology for steady-state solution of generalized multi-mode vapor compression systems. Applied Thermal Engineering, 2021, 185, 116385.                                           | 6.0 | 3         |
| 3  | Transport properties of real moist air, dry air, steam, and water. Science and Technology for the Built<br>Environment, 2021, 27, 393-401.                                                                    | 1.7 | 4         |
| 4  | Automated Parameterized CFD Simulations of Phase-Change Material Embedded Heat Exchangers. , 2021, , .                                                                                                        |     | 1         |
| 5  | Investigation of the variability in the measurement of cyclic degradation coefficient of air conditioning systems. International Journal of Refrigeration, 2021, 128, 1-11.                                   | 3.4 | 1         |
| 6  | Airside Heat Transfer and Friction Characteristics of a 0.8 mm Diameter Bare Tube Heat Exchanger. Heat<br>Transfer Engineering, 2020, 41, 1720-1730.                                                          | 1.9 | 6         |
| 7  | Pillow plate heat exchanger weld shape optimization using approximation and parallel parameterized CFD and non-uniform rational B-splines. International Journal of Refrigeration, 2020, 110, 121-131.        | 3.4 | 15        |
| 8  | Airside thermal and hydraulic characteristics of compact bare tube heat exchanger under dry and wet conditions. International Journal of Refrigeration, 2020, 110, 295-307.                                   | 3.4 | 5         |
| 9  | Comparison of approximation-assisted heat exchanger models for steady-state simulation of vapor compression system. Applied Thermal Engineering, 2020, 166, 114691.                                           | 6.0 | 6         |
| 10 | Evaluating Recharge Options for Phase-Change Material Storage of a Personal Conditioning System.<br>Science and Technology for the Built Environment, 2019, 25, 1337-1351.                                    | 1.7 | 0         |
| 11 | Thermal storage subcooling for CO2 booster refrigeration systems. Science and Technology for the<br>Built Environment, 2019, 25, 570-587.                                                                     | 1.7 | 3         |
| 12 | Performance of heat pumps using pure and mixed refrigerants with maldistribution effects in plate heat exchanger evaporators. International Journal of Refrigeration, 2019, 104, 390-403.                     | 3.4 | 9         |
| 13 | Tube-fin heat exchanger circuitry optimization using integer permutation based Genetic Algorithm.<br>International Journal of Refrigeration, 2019, 103, 135-144.                                              | 3.4 | 21        |
| 14 | Improving system performance of a personal conditioning system integrated with thermal storage.<br>Applied Thermal Engineering, 2019, 147, 40-51.                                                             | 6.0 | 16        |
| 15 | Optimization of Heat Exchanger Flow Paths Using a Novel Integer Permutation Based Genetic Algorithm. , 2019, , 212-223.                                                                                       |     | 1         |
| 16 | Transient simulation of carbon dioxide booster refrigeration system with mechanical subcooler in<br>demand response operation. Science and Technology for the Built Environment, 2018, 24, 687-699.           | 1.7 | 5         |
| 17 | A CFD assisted segmented control volume based heat exchanger model for simulation of<br>air-to-refrigerant heat exchanger with air flow mal-distribution. Applied Thermal Engineering, 2018,<br>131, 230-243. | 6.0 | 13        |
| 18 | A Validated Framework for Innovation and Design Optimization of Air-to-Refrigerant Heat Exchangers.<br>Advances in Heat Transfer, 2018, 50, 301-332.                                                          | 0.9 | 1         |

VIKRANT C AUTE

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Experimental evaluation of transcritical CO <sub>2</sub> refrigeration with mechanical subcooling.<br>Science and Technology for the Built Environment, 2017, 23, 1013-1025.                                                  | 1.7  | 22        |
| 20 | Portable personal conditioning systems: Transient modeling and system analysis. Applied Energy, 2017, 208, 390-401.                                                                                                           | 10.1 | 14        |
| 21 | Design optimization and validation of high-performance heat exchangers using approximation assisted optimization and additive manufacturing. Science and Technology for the Built Environment, 2017, 23, 896-911.             | 1.7  | 52        |
| 22 | Design and numerical parametric study of a compact air-cooled heat exchanger. Science and Technology for the Built Environment, 2017, 23, 970-982.                                                                            | 1.7  | 4         |
| 23 | Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants. International Journal of Life Cycle Assessment, 2017, 22, 675-682.                                                  | 4.7  | 17        |
| 24 | Airside friction and heat transfer characteristics for staggered tube bundle in crossflow<br>configuration with diameters from 0.5 mm to 2.0 mm. International Journal of Heat and Mass Transfer,<br>2016, 98, 448-454.       | 4.8  | 18        |
| 25 | A survey of correlations for heat transfer and pressure drop for evaporation and condensation in plate heat exchangers. International Journal of Refrigeration, 2016, 65, 12-26.                                              | 3.4  | 89        |
| 26 | Transient simulation of heat pumps using low global warming potential refrigerants. Science and<br>Technology for the Built Environment, 2015, 21, 658-665.                                                                   | 1.7  | 2         |
| 27 | Airflow distribution and design optimization of variable geometry microchannel heat exchangers.<br>Science and Technology for the Built Environment, 2015, 21, 693-702.                                                       | 1.7  | 7         |
| 28 | Variable geometry microchannel heat exchanger modeling under dry, wet, and partially wet surface conditions accounting for tube-to-tube heat conduction. Science and Technology for the Built Environment, 2015, 21, 703-717. | 1.7  | 5         |
| 29 | A comparison of transient heat pump cycle models using alternative flow descriptions. Science and<br>Technology for the Built Environment, 2015, 21, 666-680.                                                                 | 1.7  | 11        |
| 30 | Testing, simulation and soft-optimization of R410A low-GWP alternatives in heat pump system.<br>International Journal of Refrigeration, 2015, 60, 106-117.                                                                    | 3.4  | 59        |
| 31 | Transient modeling of a flash tank vapor injection heat pump system – Part I: Model development.<br>International Journal of Refrigeration, 2015, 49, 169-182.                                                                | 3.4  | 60        |
| 32 | A computational fluid dynamics and effectiveness-NTU based co-simulation approach for flow<br>mal-distribution analysis in microchannel heat exchanger headers. Applied Thermal Engineering, 2014,<br>65, 447-457.            | 6.0  | 36        |
| 33 | A model for air-to-refrigerant microchannel condensers with variable tube and fin geometries.<br>International Journal of Refrigeration, 2014, 40, 269-281.                                                                   | 3.4  | 32        |
| 34 | A finite volume coaxial heat exchanger model with moving boundaries and modifications to correlations for two-phase flow in fluted annuli. International Journal of Refrigeration, 2014, 40, 11-23.                           | 3.4  | 12        |
| 35 | Multi-Scale Modeling and Approximation Assisted Optimization of Bare Tube Heat Exchangers. , 2014, , .                                                                                                                        |      | 1         |
| 36 | Approximation assisted optimization of headers for new generation of air-cooled heat exchangers.<br>Applied Thermal Engineering, 2013, 61, 817-824.                                                                           | 6.0  | 19        |

VIKRANT C AUTE

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A new model for plate heat exchangers with generalized flow configurations and phase change.<br>International Journal of Refrigeration, 2013, 36, 622-632.                      | 3.4 | 39        |
| 38 | Chevron plate heat exchanger optimization using efficient approximation-assisted multi-objective optimization techniques. HVAC and R Research, 2013, 19, 788-799.               | 0.6 | 8         |
| 39 | Numerical simulation and optimization of single-phase turbulent flow in chevron-type plate heat exchanger with sinusoidal corrugations. HVAC and R Research, 2011, 17, 186-197. | 0.6 | 28        |
| 40 | Simulation of air-to-refrigerant fin-and-tube heat exchanger with CFD-based air propagation.<br>International Journal of Refrigeration, 2011, 34, 1883-1897.                    | 3.4 | 28        |
| 41 | An accumulative error based adaptive design of experiments for offline metamodeling. Structural and Multidisciplinary Optimization, 2010, 40, 137-155.                          | 3.5 | 81        |
| 42 | Approximation-Assisted Optimization for Novel Compact Heat Exchanger Designs. HVAC and R<br>Research, 2010, 16, 707-728.                                                        | 0.6 | 24        |
| 43 | A heat exchanger model for air-to-refrigerant fin-and-tube heat exchanger with arbitrary fin sheet.<br>International Journal of Refrigeration, 2009, 32, 1724-1735.             | 3.4 | 23        |
| 44 | Comprehensive investigation of numerical methods in simulating a steady-state vapor compression system. International Journal of Refrigeration, 2008, 31, 930-942.              | 3.4 | 37        |
| 45 | Numerical approach for modeling air-to-refrigerant fin-and-tube heat exchanger with tube-to-tube heat transfer. International Journal of Refrigeration, 2008, 31, 1414-1425.    | 3.4 | 42        |
| 46 | CoilDesigner: a general-purpose simulation and design tool for air-to-refrigerant heat exchangers.<br>International Journal of Refrigeration, 2006, 29, 601-610.                | 3.4 | 148       |