
Walid Sadok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2220801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Canopy cooling traits associated with yield performance in heat-stressed oat. European Journal of Agronomy, 2022, 139, 126555.	4.1	6
2	Transpiration increases under highâ€ŧemperature stress: Potential mechanisms, tradeâ€offs and prospects for crop resilience in a warming world. Plant, Cell and Environment, 2021, 44, 2102-2116.	5.7	65
3	Harnessing nighttime transpiration dynamics for drought tolerance in grasses. Plant Signaling and Behavior, 2021, 16, 1875646.	2.4	1
4	Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biology, 2021, 27, 1704-1720.	9.5	92
5	Sleep tight and wake-up early: nocturnal transpiration traits to increase wheat drought tolerance in a Mediterranean environment. Functional Plant Biology, 2020, 47, 1117.	2.1	16
6	Sheathing the blade: Significant contribution of sheaths to daytime and nighttime gas exchange in a grass crop. Plant, Cell and Environment, 2020, 43, 1844-1861.	5.7	9
7	The Hidden Costs of Nighttime Warming on Yields. Trends in Plant Science, 2020, 25, 644-651.	8.8	87
8	Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring. European Journal of Agronomy, 2019, 107, 1-9.	4.1	35
9	Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat. Annals of Botany, 2019, 124, 969-978.	2.9	20
10	Variability in temperature-independent transpiration responses to evaporative demand correlate with nighttime water use and its circadian control across diverse wheat populations. Planta, 2019, 250, 115-127.	3.2	17
11	Diversity in daytime and nightâ€ŧime transpiration dynamics in barley indicates adaptation to drought regimes across the Middleâ€East. Journal of Agronomy and Crop Science, 2019, 205, 372-384.	3.5	16
12	Nightly business: Links between daytime canopy conductance, nocturnal transpiration and its circadian control illuminate physiological trade-offs in maize. Environmental and Experimental Botany, 2018, 148, 192-202.	4.2	21
13	Increased contribution of wheat nocturnal transpiration to daily water use under drought. Physiologia Plantarum, 2018, 162, 290-300.	5.2	21
14	Winter Hardiness and Freezing Tolerance in a Hairy Vetch Collection. Crop Science, 2018, 58, 1594-1604.	1.8	15
15	Yield comparison of simulated rainfed wheat and barley across Middle-East. Agricultural Systems, 2017, 153, 101-108.	6.1	18
16	Limited-transpiration response to high vapor pressure deficit in crop species. Plant Science, 2017, 260, 109-118.	3.6	108
17	Wheat. SpringerBriefs in Environmental Science, 2017, , 85-92.	0.3	3
18	Pot binding as a variable confounding plant phenotype: theoretical derivation and experimental observations. Planta, 2017, 245, 729-735.	3.2	19

WALID SADOK

#	Article	IF	CITATIONS
19	Nighttime evaporative demand induces plasticity in leaf and root hydraulic traits. Physiologia Plantarum, 2016, 158, 402-413.	5.2	14
20	High resolution mapping of traits related to whole-plant transpiration under increasing evaporative demand in wheat. Journal of Experimental Botany, 2016, 67, 2847-2860.	4.8	54
21	Higher forage yields under temperate drought explained by lower transpiration rates under increasing evaporative demand. European Journal of Agronomy, 2016, 72, 91-98.	4.1	14
22	The circadian life of nocturnal water use: when lateâ€night decisions help improve your day. Plant, Cell and Environment, 2016, 39, 1-2.	5.7	13
23	Guidelines to design models assessing agricultural sustainability, based upon feedbacks from the DEXi decision support system. Agronomy for Sustainable Development, 2015, 35, 1431-1447.	5.3	36
24	Genotype-dependent influence of night-time vapour pressure deficit on night-time transpiration and daytime gas exchange in wheat. Functional Plant Biology, 2014, 41, 963.	2.1	50
25	Conservative water use under high evaporative demand associated with smaller root metaxylem and limited trans-membrane water transport in wheat. Functional Plant Biology, 2014, 41, 257.	2.1	75
26	Transpiration sensitivities to evaporative demand and leaf areas vary with night and day warming regimes among wheat genotypes. Functional Plant Biology, 2013, 40, 708.	2.1	42
27	ZINC TREATMENT RESULTS IN TRANSPIRATION RATE DECREASES THAT VARY AMONG SOYBEAN GENOTYPES. Journal of Plant Nutrition, 2012, 35, 1866-1877.	1.9	9
28	Differential sensitivities of transpiration to evaporative demand and soil water deficit among wheat elite cultivars indicate different strategies for drought tolerance. Environmental and Experimental Botany, 2012, 84, 1-10.	4.2	102
29	A Common Genetic Determinism for Sensitivities to Soil Water Deficit and Evaporative Demand: Meta-Analysis of Quantitative Trait Loci and Introgression Lines of Maize Â. Plant Physiology, 2011, 157, 718-729.	4.8	71
30	Genetic Variability of Transpiration Response of Soybean [<i>Glycine max</i> (L.) Merr.] Shoots to Leaf Hydraulic Conductance Inhibitor AgNO ₃ . Crop Science, 2010, 50, 1423-1430.	1.8	48
31	Transpiration response of â€~slow-wilting' and commercial soybean (Clycine max (L.) Merr.) genotypes to three aquaporin inhibitors. Journal of Experimental Botany, 2010, 61, 821-829.	4.8	101
32	Genetic Variability of Transpiration Response to Vapor Pressure Deficit among Soybean Cultivars. Crop Science, 2009, 49, 955-960.	1.8	77
33	Genetic variability of transpiration response to vapor pressure deficit among soybean (Glycine max [L.]) Tj ETQq1 156-160.	1 0.7843 5.1	14 rgBT /O 43
34	Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant, Cell and Environment, 2007, 30, 135-146.	5.7	138
35	Association between xylem vasculature size and freezing survival in winter barley. Journal of Agronomy and Crop Science, 0, , .	3.5	0