
Manoj Kumar Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2220422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia, 2007, 55, 483-496.	2.5	344
2	Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Molecular Cancer Therapeutics, 2007, 6, 2544-2553.	1.9	210
3	Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain, 2016, 139, 653-661.	3.7	199
4	Myeloid cells — targets of medication in multiple sclerosis. Nature Reviews Neurology, 2016, 12, 539-551.	4.9	163
5	Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. Journal of Neurochemistry, 2008, 105, 1582-1595.	2.1	146
6	Nanoscale effects in dendrimer-mediated targeting of neuroinflammation. Biomaterials, 2016, 101, 96-107.	5.7	107
7	Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine, 2010, 5, 1317-1329.	1.7	100
8	Novel strategy for treatment of Japanese encephalitis using arctigenin, a plant lignan. Journal of Antimicrobial Chemotherapy, 2008, 61, 679-688.	1.3	99
9	Japanese Encephalitis Virus infection induces IL-18 and IL-1Î ² in microglia and astrocytes: Correlation with in vitro cytokine responsiveness of glial cells and subsequent neuronal death. Journal of Neuroimmunology, 2008, 195, 60-72.	1.1	98
10	Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury. Brain, 2014, 137, 707-723.	3.7	92
11	Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathologica, 2020, 139, 893-909.	3.9	80
12	Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. Annals of Clinical and Translational Neurology, 2014, 1, 409-422.	1.7	77
13	Stimulation of Monocytes, Macrophages, and Microglia by Amphotericin B and Macrophage Colony-Stimulating Factor Promotes Remyelination. Journal of Neuroscience, 2015, 35, 1136-1148.	1.7	76
14	Antioxidant potential of Minocycline in Japanese Encephalitis Virus infection in murine neuroblastoma cells: Correlation with membrane fluidity and cell death. Neurochemistry International, 2009, 54, 464-470.	1.9	72
15	Kinetics of Proinflammatory Monocytes in a Model of Multiple Sclerosis and Its Perturbation by Laquinimod. American Journal of Pathology, 2012, 181, 642-651.	1.9	72
16	Understanding the molecular mechanism of blood–brain barrier damage in an experimental model of Japanese encephalitis: Correlation with minocycline administration as a therapeutic agent. Neurochemistry International, 2009, 55, 717-723.	1.9	69
17	Chondroitin sulfate proteoglycans as novel drivers of leucocyte infiltration in multiple sclerosis. Brain, 2018, 141, 1094-1110.	3.7	67
18	Tobacco carcinogen induces microglial activation and subsequent neuronal damage. Journal of Neurochemistry, 2009, 110, 1070-1081.	2.1	55

Manoj Kumar Mishra

#	Article	IF	CITATIONS
19	Minocycline differentially modulates macrophage mediated peripheral immune response following Japanese encephalitis virus infection. Immunobiology, 2010, 215, 884-893.	0.8	53
20	A study of cytokines in tuberculous meningitis: Clinical and MRI correlation. Neuroscience Letters, 2010, 483, 6-10.	1.0	52
21	Systematic screening of generic drugs for progressive multiple sclerosis identifies clomipramine as a promising therapeutic. Nature Communications, 2017, 8, 1990.	5.8	50
22	Neuroprotection conferred by astrocytes is insufficient to protect animals from succumbing to Japanese encephalitis. Neurochemistry International, 2007, 50, 764-773.	1.9	45
23	Regenerative Capacity of Macrophages for Remyelination. Frontiers in Cell and Developmental Biology, 2016, 4, 47.	1.8	45
24	Protective effects of interleukin-6 in lipopolysaccharide (LPS)-induced experimental endotoxemia are linked to alteration in hepatic anti-oxidant enzymes and endogenous cytokines. Immunobiology, 2010, 215, 443-451.	0.8	38
25	Japanese encephalitis virus differentially modulates the induction of multiple proâ€inflammatory mediators in human astrocytoma and astroglioma cellâ€lines. Cell Biology International, 2008, 32, 1506-1513.	1.4	36
26	Control of brain tumor growth by reactivating myeloid cells with niacin. Science Translational Medicine, 2020, 12, .	5.8	35
27	Cytokines and chemokines in viral encephalitis: A clinicoradiological correlation. Neuroscience Letters, 2010, 473, 48-51.	1.0	34
28	Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: Prospective combination treatment for progressive disease?. Multiple Sclerosis Journal, 2018, 24, 1543-1556.	1.4	33
29	Impact of Minocycline on Extracellular Matrix Metalloproteinase Inducer, a Factor Implicated in Multiple Sclerosis Immunopathogenesis. Journal of Immunology, 2016, 197, 3850-3860.	0.4	32
30	Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. Macromolecular Bioscience, 2015, 15, 1523-1534.	2.1	31
31	ING1 and 5-Azacytidine Act Synergistically to Block Breast Cancer Cell Growth. PLoS ONE, 2012, 7, e43671.	1.1	30
32	Minocycline Differentially Modulates Viral Infection and Persistence in an Experimental Model of Japanese Encephalitis. Journal of NeuroImmune Pharmacology, 2010, 5, 553-565.	2.1	29
33	Screening for Inhibitors of Microglia to Reduce Neuroinflammation. CNS and Neurological Disorders - Drug Targets, 2013, 12, 741-749.	0.8	21
34	The glycosyltransferase EXTL2 promotes proteoglycan deposition and injurious neuroinflammation following demyelination. Journal of Neuroinflammation, 2020, 17, 220.	3.1	18
35	Gestational bisphenol-A exposure lowers the threshold for autoimmunity in a model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4999-5004.	3.3	17
36	Harnessing the Benefits of Neuroinflammation: Generation of Macrophages/Microglia with Prominent Remyelinating Properties. Journal of Neuroscience, 2021, 41, 3366-3385.	1.7	14

#	Article	IF	CITATIONS
37	Aging-Exacerbated Acute Axon and Myelin Injury Is Associated with Microglia-Derived Reactive Oxygen Species and Is Alleviated by the Generic Medication Indapamide. Journal of Neuroscience, 2020, 40, 8587-8600.	1.7	13
38	Clutathione synthesis inhibitor butathione sulfoximine regulates ceruloplasmin by dual but opposite mechanism: Implication in hepatic iron overload. Free Radical Biology and Medicine, 2010, 48, 1492-1500.	1.3	8
39	A Distinct Hibiscus sabdariffa Extract Prevents Iron Neurotoxicity, a Driver of Multiple Sclerosis Pathology. Cells, 2022, 11, 440.	1.8	5
40	Effect of particulate antigenic stimulation or in vivo administration of interleukin-6 on the level of steroidogenic enzymes in adrenal glands and lymphoid tissues of mice with parallel alteration in endogenous inflammatory cytokine level. Cellular Immunology, 2010, 261, 23-28.	1.4	4
41	Quantitative analysis of spinal cord neuropathology in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2022, 362, 577777.	1.1	4
42	Modulation of Steroidogenic Enzymes in Murine Lymphoid Organs After Immune Activation. Immunological Investigations, 2009, 38, 14-30.	1.0	3
43	Macrophages and Microglia in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. , 2013, , 177-195.		1
44	Enhancement of the activity of M2-polarized macrophages/microglia promotes recovery from demyelination. Journal of Neuroimmunology, 2014, 275, 187.	1.1	0