Marziyeh Ranjbar-Mohammadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2220097/publications.pdf Version: 2024-02-01

Marziyeh

#	Article	IF	CITATIONS
1	Designing hybrid nanofibers based on keratin-poly (vinyl alcohol) and poly (ƕcaprolactone) for application as wound dressing. Journal of Industrial Textiles, 2022, 51, 1729S-1949S.	2.4	18
2	Fabrication of a dye removal system through electrospun of TiO2/Nylon-6 nanocomposite on three-dimensional spacer fabrics. Polymer Bulletin, 2022, 79, 2953-2967.	3.3	2
3	Adsorption of Carbon Dioxide with Ni-MOF-74 and MWCNT Incorporated Poly Acrylonitrile Nanofibers. Nanomaterials, 2022, 12, 412.	4.1	6
4	Production and in vitro analysis of catechin incorporated electrospun gelatin/ poly (lactic acid) microfibers for wound dressing applications. Journal of Industrial Textiles, 2022, 51, 7529S-7544S.	2.4	7
5	Fabrication and Characterization of Antibacterial Suture Yarns Containing PLA/Tetracycline Hydrochloride-PVA/Chitosan Nanofibers. Fibers and Polymers, 2022, 23, 1538-1547.	2.1	10
6	Design and characterization of keratin/PVA-PLA nanofibers containing hybrids of nanofibrillated chitosan/ZnO nanoparticles. International Journal of Biological Macromolecules, 2021, 187, 554-565.	7.5	19
7	Efficient coâ€cultivation of human fibroblast cells (HFCs) and adiposeâ€derived stem cells (ADSs) on gelatin/PLCL nanofiber. IET Nanobiotechnology, 2020, 14, 73-77.	3.8	4
8	Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Polymers, 2020, 12, 176.	4.5	122
9	Low cost hydrogels based on gum Tragacanth and TiO2 nanoparticles: characterization and RBFNN modelling of methylene blue dye removal. International Journal of Biological Macromolecules, 2019, 134, 967-975.	7.5	33
10	Multi-cellular tumor spheroids formation of colorectal cancer cells on Gelatin/PLCL and Collagen/PLCL nanofibrous scaffolds. European Polymer Journal, 2019, 115, 115-124.	5.4	19
11	Titania/gum tragacanth nanohydrogel for methylene blue dye removal from textile wastewater using response surface methodology. Polymer International, 2019, 68, 134-140.	3.1	24
12	Designing tripleâ€shape memory polymers from a miscible polymer pair through dualâ€electrospinning technique. Journal of Applied Polymer Science, 2019, 136, 47471.	2.6	20
13	Production of cotton fabrics with durable antibacterial property by using gum tragacanth and silver. International Journal of Biological Macromolecules, 2018, 109, 476-482.	7.5	48
14	Coaxial nanofibers from poly(caprolactone)/ poly(vinyl alcohol)/Thyme and their antibacterial properties. Journal of Industrial Textiles, 2018, 47, 834-852.	2.4	31
15	Characteristics of aloe vera incorporated poly(ε-caprolactone)/gum tragacanth nanofibers as dressings for wound care. Journal of Industrial Textiles, 2018, 47, 1464-1477.	2.4	28
16	Fabrication of curcumin-loaded gum tragacanth/poly(vinyl alcohol) nanofibers with optimized electrospinning parameters. Journal of Industrial Textiles, 2017, 46, 1170-1192.	2.4	52
17	Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Materials Science and Engineering C, 2017, 78, 218-229.	7.3	71
18	Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(Îμ-caprolactone) electrospun nanofibers. Materials Science and Engineering C, 2016, 69, 1183-1191.	7.3	234

Marziyeh

IF # ARTICLE CITATIONS Gum tragacanth/poly(1-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Carbohydrate Polymers, 2016, 140, 104-112. $\label{eq:linear} Electrospun curcumin loaded poly (\hat{l}\mu\mbox{-}caprolactone)/gum tragacanth nanofibers for biomedical application. International Journal of Biological Macromolecules, 2016, 84, 448-456.$ 20 7.5 147 Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Materials Science and Engineering C, 2016, 58, 521-531. Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial 22 2.4 54 properties. Journal of Industrial Textiles, 2016, 46, 562-577. Development of nanofibrous scaffolds containing gum tragacanth/poly ($\hat{l}\mu$ -caprolactone) for application as skin scaffolds. Materials Science and Engineering C, 2015, 48, 71-79. Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound 24 dressing application: In vitro evaluation and antibacterial properties. Materials Science and 7.3 137 Engineering C, 2013, 33, 4935-4943. Ecoâ€friendly grafting of natural biopolymer chitosan onto acylated wool fabrics using ultrasonic and study its properties. Journal of Applied Polymer Science, 2013, 129, 707-713. Grafting of chitosan as a biopolymer onto wool fabric using anhydride bridge and its antibacterial 26 5.0 98

property. Colloids and Surfaces B: Biointerfaces, 2010, 76, 397-403.