
Marziyeh Ranjbar-Mohammadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2220097/publications.pdf Version: 2024-02-01

Marziyeh

#	Article	IF	CITATIONS
1	Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(Îμ-caprolactone) electrospun nanofibers. Materials Science and Engineering C, 2016, 69, 1183-1191.	7.3	234
2	Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Materials Science and Engineering C, 2016, 58, 521-531.	7.3	160
3	Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. International Journal of Biological Macromolecules, 2016, 84, 448-456.	7.5	147
4	Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties. Materials Science and Engineering C, 2013, 33, 4935-4943.	7.3	137
5	Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Polymers, 2020, 12, 176.	4.5	122
6	Grafting of chitosan as a biopolymer onto wool fabric using anhydride bridge and its antibacterial property. Colloids and Surfaces B: Biointerfaces, 2010, 76, 397-403.	5.0	98
7	Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Materials Science and Engineering C, 2015, 48, 71-79.	7.3	83
8	Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Materials Science and Engineering C, 2017, 78, 218-229.	7.3	71
9	Gum tragacanth/poly(l -lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Carbohydrate Polymers, 2016, 140, 104-112.	10.2	63
10	Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. Journal of Industrial Textiles, 2016, 46, 562-577.	2.4	54
11	Fabrication of curcumin-loaded gum tragacanth/poly(vinyl alcohol) nanofibers with optimized electrospinning parameters. Journal of Industrial Textiles, 2017, 46, 1170-1192.	2.4	52
12	Production of cotton fabrics with durable antibacterial property by using gum tragacanth and silver. International Journal of Biological Macromolecules, 2018, 109, 476-482.	7.5	48
13	Low cost hydrogels based on gum Tragacanth and TiO2 nanoparticles: characterization and RBFNN modelling of methylene blue dye removal. International Journal of Biological Macromolecules, 2019, 134, 967-975.	7.5	33
14	Coaxial nanofibers from poly(caprolactone)/ poly(vinyl alcohol)/Thyme and their antibacterial properties. Journal of Industrial Textiles, 2018, 47, 834-852.	2.4	31
15	Characteristics of aloe vera incorporated poly(ε-caprolactone)/gum tragacanth nanofibers as dressings for wound care. Journal of Industrial Textiles, 2018, 47, 1464-1477.	2.4	28
16	Ecoâ€friendly grafting of natural biopolymer chitosan onto acylated wool fabrics using ultrasonic and study its properties. Journal of Applied Polymer Science, 2013, 129, 707-713.	2.6	25
17	Titania/gum tragacanth nanohydrogel for methylene blue dye removal from textile wastewater using response surface methodology. Polymer International, 2019, 68, 134-140.	3.1	24
18	Designing tripleâ€shape memory polymers from a miscible polymer pair through dualâ€electrospinning technique. Journal of Applied Polymer Science, 2019, 136, 47471.	2.6	20

MARZIYEH

#	Article	IF	CITATIONS
19	Multi-cellular tumor spheroids formation of colorectal cancer cells on Gelatin/PLCL and Collagen/PLCL nanofibrous scaffolds. European Polymer Journal, 2019, 115, 115-124.	5.4	19
20	Design and characterization of keratin/PVA-PLA nanofibers containing hybrids of nanofibrillated chitosan/ZnO nanoparticles. International Journal of Biological Macromolecules, 2021, 187, 554-565.	7.5	19
21	Designing hybrid nanofibers based on keratin-poly (vinyl alcohol) and poly (ƕcaprolactone) for application as wound dressing. Journal of Industrial Textiles, 2022, 51, 1729S-1949S.	2.4	18
22	Fabrication and Characterization of Antibacterial Suture Yarns Containing PLA/Tetracycline Hydrochloride-PVA/Chitosan Nanofibers. Fibers and Polymers, 2022, 23, 1538-1547.	2.1	10
23	Production and in vitro analysis of catechin incorporated electrospun gelatin/ poly (lactic acid) microfibers for wound dressing applications. Journal of Industrial Textiles, 2022, 51, 7529S-7544S.	2.4	7
24	Adsorption of Carbon Dioxide with Ni-MOF-74 and MWCNT Incorporated Poly Acrylonitrile Nanofibers. Nanomaterials, 2022, 12, 412.	4.1	6
25	Efficient co ultivation of human fibroblast cells (HFCs) and adiposeâ€derived stem cells (ADSs) on gelatin/PLCL nanofiber. IET Nanobiotechnology, 2020, 14, 73-77.	3.8	4
26	Fabrication of a dye removal system through electrospun of TiO2/Nylon-6 nanocomposite on three-dimensional spacer fabrics. Polymer Bulletin, 2022, 79, 2953-2967.	3.3	2