Sher Bahadar Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2220049/publications.pdf

Version: 2024-02-01

391 papers 14,986 citations

13068 68 h-index 97 g-index

399 all docs

399 docs citations

times ranked

399

12723 citing authors

#	Article	IF	Citations
1	Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Current Pharmaceutical Design, 2019, 25, 3645-3663.	0.9	336
2	Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Research, 2013, 6, 47-54.	5.8	274
3	Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Science of the Total Environment, 2011, 409, 2987-2992.	3.9	236
4	A Comprehensive Review of Magnetic Nanomaterials Modern Day Theranostics. Frontiers in Materials, 2019, 6, .	1,2	213
5	Prospective of the cosmeceuticals derived from marine organisms. Biotechnology and Bioprocess Engineering, 2008, 13, 511-523.	1.4	203
6	Green synthesis of plant supported Cu Ag and Cu Ni bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. Journal of Molecular Liquids, 2018, 260, 78-91.	2.3	187
7	Low-temperature growth of ZnO nanoparticles: Photocatalyst and acetone sensor. Talanta, 2011, 85, 943-949.	2.9	171
8	CuO Codoped ZnO Based Nanostructured Materials for Sensitive Chemical Sensor Applications. ACS Applied Materials & Sensor Sensor Applications. ACS Applied Materials & Sensor Sensor Applications. ACS Applied Materials & Sensor	4.0	162
9	Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials. Biosensors and Bioelectronics, 2011, 28, 127-134.	5 . 3	161
10	Role of ZnO-CeO2 Nanostructures as a Photo-catalyst and Chemi-sensor. Journal of Materials Science and Technology, 2011, 27, 594-600.	5.6	156
11	Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. Journal of Molecular Liquids, 2018, 268, 87-101.	2.3	156
12	Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction. Cellulose, 2016, 23, 1911-1923.	2.4	155
13	Dye adsorption and bactericidal properties of TiO2/chitosan coating layer. Carbohydrate Polymers, 2016, 148, 153-160.	5.1	142
14	Highly-enhanced water resistant and oxygen barrier properties of cross-linked poly(vinyl alcohol) hybrid films for packaging applications. Progress in Organic Coatings, 2015, 85, 68-75.	1.9	141
15	Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceramics International, 2020, 46, 19078-19083.	2.3	139
16	Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer. International Journal of Biological Macromolecules, 2015, 81, 584-590.	3.6	137
17	Nickel nanoparticles-chitosan composite coated cellulose filter paper: An efficient and easily recoverable dip-catalyst for pollutants degradation. Environmental Pollution, 2016, 218, 625-633.	3.7	133
18	Natural polymers supported copper nanoparticles for pollutants degradation. Applied Surface Science, 2016, 387, 1154-1161.	3.1	131

#	Article	IF	Citations
19	Fabrication of Highly Sensitive Ethanol Chemical Sensor Based on Sm-Doped Co ₃ O ₄ Nanokernels by a Hydrothermal Method. Journal of Physical Chemistry C, 2011, 115, 9503-9510.	1.5	130
20	Ethanol chemi-sensor: Evaluation of structural, optical and sensing properties of CuO nanosheets. Materials Letters, 2011, 65, 1400-1403.	1.3	127
21	CuO embedded chitosan spheres as antibacterial adsorbent for dyes. International Journal of Biological Macromolecules, 2016, 88, 113-119.	3.6	124
22	Chitosan-titanium oxide fibers supported zero-valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants. Scientific Reports, 2018, 8, 6260.	1.6	123
23	Photoinduced Atom Transfer Radical Polymerization Using Semiconductor Nanoparticles. Macromolecular Rapid Communications, 2014, 35, 454-459.	2.0	120
24	Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Processing and Synthesis, 2019, 8, 135-143.	1.3	119
25	Biosynthesis of silver nanoparticles: A colorimetric optical sensor for detection of hexavalent chromium and ammonia in aqueous solution. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103, 367-376.	1.3	114
26	Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst. Applied Surface Science, 2012, 258, 7515-7522.	3.1	110
27	Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohydrate Polymers, 2017, 173, 676-689.	5.1	109
28	Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO. Progress in Organic Coatings, 2012, 74, 435-442.	1.9	107
29	An efficient and easily retrievable dip catalyst based on silver nanoparticles/chitosan-coated cellulose filter paper. Cellulose, 2016, 23, 3577-3588.	2.4	107
30	Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol. International Journal of Biological Macromolecules, 2017, 102, 868-877.	3.6	107
31	Smart chemical sensor and active photo-catalyst for environmental pollutants. Chemical Engineering Journal, 2011, 173, 178-184.	6.6	103
32	Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. International Journal of Biological Macromolecules, 2016, 91, 744-751.	3.6	103
33	Preparation and properties of poly(propylene carbonate) and nanosized ZnO composite films for packaging applications. Journal of Applied Polymer Science, 2011, 122, 1101-1108.	1.3	102
34	Chitosan coated cotton cloth supported zero-valent nanoparticles: Simple but economically viable, efficient and easily retrievable catalysts. Scientific Reports, 2017, 7, 16957.	1.6	100
35	Bactericidal and catalytic performance of green nanocomposite based-on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles. Chemosphere, 2017, 188, 588-598.	4.2	99
36	Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers. Carbohydrate Polymers, 2017, 157, 294-302.	5.1	99

#	Article	IF	CITATIONS
37	Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods. Sensors and Actuators B: Chemical, 2012, 171-172, 932-937.	4.0	98
38	Synthesis, characterizations, photocatalytic and sensing studies of ZnO nanocapsules. Applied Surface Science, 2011, 258, 672-677.	3.1	96
39	Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method. Mikrochimica Acta, 2012, 178, 99-106.	2.5	96
40	Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol. Journal of Molecular Liquids, 2017, 230, 616-624.	2.3	96
41	Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydrate Polymers, 2018, 192, 217-230.	5.1	95
42	Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection. Journal of Industrial and Engineering Chemistry, 2015, 24, 266-275.	2.9	94
43	Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. International Journal of Biological Macromolecules, 2019, 132, 772-783.	3.6	94
44	Characterization and applications of as-grown \hat{i}^2 -Fe2O3 nanoparticles prepared by hydrothermal method. Journal of Nanoparticle Research, 2011, 13, 3789-3799.	0.8	93
45	Multi-layered mesoporous TiO ₂ thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion. Journal of Materials Chemistry A, 2013, 1, 1591-1599.	5.2	91
46	Fabrication of highly sensitive acetone sensor based on sonochemically prepared as-grown Ag2O nanostructures. Chemical Engineering Journal, 2012, 192, 122-128.	6.6	87
47	Structure and thermal properties of octadecane/expanded graphite composites as shape-stabilized phase change materials. International Journal of Heat and Mass Transfer, 2016, 95, 735-741.	2.5	87
48	Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles. International Journal of Biological Macromolecules, 2017, 104, 56-62.	3.6	86
49	Hierarchical Cu ₂ S Microsponges Constructed from Nanosheets for Efficient Photocatalysis. Small, 2013, 9, 2702-2708.	5.2	85
50	Physicochemical characterization of Malaysian crop and agro-industrial biomass residues as renewable energy resources. Industrial Crops and Products, 2018, 111, 642-650.	2.5	84
51	Bacterial cellulose as support for biopolymer stabilized catalytic cobalt nanoparticles. International Journal of Biological Macromolecules, 2019, 135, 1162-1170.	3.6	83
52	Synthesis, characterization of silver nanoparticle embedded polyaniline tungstophosphate-nanocomposite cation exchanger and its application for heavy metal selective membrane. Composites Part B: Engineering, 2013, 45, 1486-1492.	5.9	81
53	Preparation and characterization of poly(propylene carbonate)/exfoliated graphite nanocomposite films with improved thermal stability, mechanical properties and barrier properties. Polymer International, 2013, 62, 1386-1394.	1.6	80
54	Anti-bacterial PES-cellulose composite spheres: dual character toward extraction and catalytic reduction of nitrophenol. RSC Advances, 2016, 6, 110077-110090.	1.7	80

#	Article	IF	CITATIONS
55	A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation. International Journal of Biological Macromolecules, 2019, 130, 288-299.	3.6	80
56	Enzymes Inhibiting Lignans from <i>Vitex negundo</i> . Chemical and Pharmaceutical Bulletin, 2004, 52, 1269-1272.	0.6	78
57	An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium. Nanoscale Research Letters, 2013, 8, 377.	3.1	78
58	Layered double hydroxide of Cd-Al/C for the Mineralization and De-coloration of Dyes in Solar and Visible Light Exposure. Scientific Reports, 2016, 6, 35107.	1.6	76
59	Recent Development of Chitosan Nanocomposites for Environmental Applications. Recent Patents on Nanotechnology, 2016, 10, 181-188.	0.7	76
60	Visible light activated degradation of organic pollutants using zinc–iron selenide. Journal of Molecular Liquids, 2017, 229, 429-435.	2.3	75
61	Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels, 2022, 8, 167.	2.1	75
62	Tyrosinase inhibitory lignans from the methanol extract of the roots of Vitex negundo Linn. and their structure–activity relationship. Phytomedicine, 2006, 13, 255-260.	2.3	73
63	Chloride ion sensors based on low-dimensional α-MnO2–Co3O4 nanoparticles fabricated glassy carbon electrodes by simple l–V technique. Electrochimica Acta, 2013, 103, 143-150.	2.6	73
64	Electrochemical determination of olmesartan medoxomil using hydrothermally prepared nanoparticles composed SnO2–Co3O4 nanocubes in tablet dosage forms. Talanta, 2012, 99, 924-931.	2.9	72
65	Synthesis and characterization of novel UV-curable polyurethane–clay nanohybrid: Influence of organically modified layered silicates on the properties of polyurethane. Progress in Organic Coatings, 2011, 71, 36-42.	1.9	71
66	Acetone sensor based on solvothermally prepared ZnO doped with Co3O4 nanorods. Mikrochimica Acta, 2013, 180, 675-685.	2.5	71
67	Highly sensitive and stable phenyl hydrazine chemical sensors based on CuO flower shapes and hollow spheres. New Journal of Chemistry, 2013, 37, 1098.	1.4	71
68	UV-cured poly(urethane acrylate) composite films containing surface-modified tetrapod ZnO whiskers. Composites Science and Technology, 2013, 75, 84-92.	3.8	71
69	Toward the design of Zn–Al and Zn–Cr LDH wrapped in activated carbon for the solar assisted de-coloration of organic dyes. RSC Advances, 2016, 6, 83196-83208.	1.7	71
70	Mixed micellization between amphiphilic drug promethazine hydrochloride and cationic surfactant (conventional as well as gemini). Journal of Molecular Liquids, 2013, 177, 19-25.	2.3	69
71	Highly efficient removal of acid redâ€17 and bromophenol blue dyes from industrial wastewater using graphene oxide functionalized magnetic chitosan composite. Polymer Composites, 2018, 39, 3317-3328.	2.3	69
72	Synthesis and environmental applications of cellulose/ZrO2 nanohybrid as a selective adsorbent for nickel ion. Composites Part B: Engineering, 2013, 50, 253-258.	5.9	68

#	Article	IF	Citations
73	Electrochemical detection and catalytic removal of 4-nitrophenol using CeO2-Cu2O and CeO2-Cu2O/CH nanocomposites. Applied Surface Science, 2019, 492, 726-735.	3.1	68
74	Chemical sensor development based on polycrystalline gold electrode embedded low-dimensional Ag2O nanoparticles. Electrochimica Acta, 2013, 112, 422-430.	2.6	67
75	Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. , 2018, , 113-145.		67
76	Special susceptive aqueous ammonia chemi-sensor: Extended applications of novel UV-curable polyurethane-clay nanohybrid. Talanta, 2011, 84, 1005-1010.	2.9	66
77	Fabrication of a methanol chemical sensor based on hydrothermally prepared α-Fe2O3 codoped SnO2 nanocubes. Talanta, 2012, 95, 18-24.	2.9	66
78	Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants. Applied Surface Science, 2012, 261, 52-58.	3.1	66
79	Chitosan coated cellulose cotton fibers as catalyst for the H2 production from NaBH4 methanolysis. International Journal of Hydrogen Energy, 2019, 44, 4143-4155.	3.8	66
80	Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants. Nanoscale Research Letters, 2014, 9, 510.	3.1	65
81	Assessment of long-range corrected functionals for the prediction of non-linear optical properties of organic materials. Chemical Physics Letters, 2013, 575, 122-125.	1.2	62
82	Micellization behavior of amphiphilic drug promazine hydrochloride and sodium dodecyl sulfate mixtures at various temperatures: Effect of electrolyte and urea. Journal of Molecular Liquids, 2015, 212, 532-543.	2.3	62
83	A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction. Applied Surface Science, 2016, 370, 445-451.	3.1	62
84	Assessment of Anti-bacterial Ni-Al/chitosan Composite Spheres for Adsorption Assisted Photo-Degradation of Organic Pollutants. Current Nanoscience, 2016, 12, 569-575.	0.7	62
85	Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. Journal of Applied Electrochemistry, 2015, 45, 463-472.	1.5	60
86	Fabrication of chloroform sensor based on hydrothermally prepared low-dimensional \hat{l}^2 -Fe2O3 nanoparticles. Superlattices and Microstructures, 2011, 50, 369-376.	1.4	59
87	Anticancer, antibacterial and pollutant degradation potential of silver nanoparticles from Hyphaene thebaica. Biochemical and Biophysical Research Communications, 2017, 490, 889-894.	1.0	58
88	Selective determination of gold(III) ion using CuO microsheets as a solid phase adsorbent prior by ICP-OES measurement. Talanta, 2013, 104, 75-82.	2.9	57
89	Selective detection of toxic Pb(II) ions based on wet-chemically prepared nanosheets integrated CuO–ZnO nanocomposites. Composites Part B: Engineering, 2013, 54, 215-223.	5.9	56
90	Detection of aprepitant drug based on low-dimensional un-doped iron oxide nanoparticles prepared by a solution method. Electrochimica Acta, 2012, 75, 164-170.	2.6	55

#	Article	IF	CITATIONS
91	Microwave Assisted Synthesis and Carboxymethyl Cellulose Stabilized Copper Nanoparticles on Bacterial Cellulose Nanofibers Support for Pollutants Degradation. Journal of Polymers and the Environment, 2019, 27, 2867-2877.	2.4	55
92	Synthesis and characterization of novel UV-Curable PU-Si hybrids: Influence of silica on thermal, mechanical, and water sorption properties of polyurethane acrylates. Macromolecular Research, 2011, 19, 1006-1013.	1.0	54
93	Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes. Chemistry Central Journal, 2013, 7, 60.	2.6	54
94	Metal nanoparticles containing chitosan wrapped cellulose nanocomposites for catalytic hydrogen production and reduction of environmental pollutants. Carbohydrate Polymers, 2020, 242, 116286.	5.1	54
95	Performance of cellulose acetate-ferric oxide nanocomposite supported metal catalysts toward the reduction of environmental pollutants. International Journal of Biological Macromolecules, 2018, 107, 668-677.	3.6	53
96	Agarose biopolymer coating on polyurethane sponge as host for catalytic silver metal nanoparticles. Polymer Testing, 2019, 78, 105983.	2.3	53
97	Physicochemical Properties of Amphiphilic Drug and Anionic Surfactant Mixtures: Experimental and Theoretical Approach. Journal of Dispersion Science and Technology, 2015, 36, 521-531.	1.3	51
98	Novel synthesis of silver nanoparticles using melon aqueous extract and evaluation of their feeding deterrent activity against housefly Musca domestica. Asian Pacific Journal of Tropical Disease, 2016, 6, 311-316.	0.5	51
99	Adsorption efficiency of date palm based activated carbon-alginate membrane for methylene blue. Chemosphere, 2022, 302, 134793.	4.2	51
100	Tyrosinase inhibitory cycloartane type triterpenoids from the methanol extract of the whole plant of Amberboa ramosa Jafri and their structure–activity relationship. Bioorganic and Medicinal Chemistry, 2006, 14, 938-943.	1.4	50
101	Semiconductor nanoparticles for photoinitiation of free radical polymerization in aqueous and organic media. Journal of Polymer Science Part A, 2014, 52, 1500-1507.	2.5	50
102	Enhanced H 2 generation from NaBH 4 hydrolysis and methanolysis by cellulose micro-fibrous cottons as metal templated catalyst. International Journal of Hydrogen Energy, 2018, 43, 6539-6550.	3.8	50
103	Aggregation behaviour of amphiphilic drug and bile salt mixtures at different compositions and temperatures. Journal of Chemical Thermodynamics, 2013, 64, 28-39.	1.0	49
104	Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expression and Purification, 2018, 144, 12-18.	0.6	49
105	Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. , 2018, , 317-344.		49
106	Copper nanoparticles embedded chitosan for efficient detection and reduction of nitroaniline. International Journal of Biological Macromolecules, 2019, 131, 666-675.	3.6	49
107	Metal nanoparticles decorated sodium alginate‑carbon nitride composite beads as effective catalyst for the reduction of organic pollutants. International Journal of Biological Macromolecules, 2020, 164, 1087-1098.	3.6	49
108	Humidity and temperature sensing properties of copper oxide–Si-adhesive nanocomposite. Talanta, 2014, 120, 443-449.	2.9	47

#	Article	IF	Citations
109	Antiproliferation and antibacterial effect of biosynthesized AgNps from leaves extract of Guiera senegalensis and its catalytic reduction on some persistent organic pollutants. Journal of Photochemistry and Photobiology B: Biology, 2017, 175, 99-108.	1.7	46
110	Potential application of Allium Cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution. Chemosphere, 2021, 279, 130545.	4.2	46
111	Preparation of sludge biochar rich in carboxyl/hydroxyl groups by quenching process and its excellent adsorption performance for Cr(VI). Chemosphere, 2021, 285, 131439.	4.2	46
112	Development of photocatalysts for selective and efficient organic transformations. Journal of Photochemistry and Photobiology B: Biology, 2015, 148, 209-222.	1.7	45
113	Impedimetric humidity and temperature sensing properties of chitosan-CuMn2O4 spinel nanocomposite. Ceramics International, 2019, 45, 10565-10571.	2.3	45
114	Cellulose acetate-Ce/Zr@CuO catalyst for the degradation of organic pollutant. International Journal of Biological Macromolecules, 2020, 153, 806-816.	3.6	45
115	Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting. Journal of Materials Science: Materials in Electronics, 2016, 27, 5294-5302.	1.1	44
116	Green synthesis of antibacterial bimetallic Ag–Cu nanoparticles for catalytic reduction of persistent organic pollutants. Journal of Materials Science: Materials in Electronics, 2018, 29, 20840-20855.	1.1	44
117	Chitosan coated NiAl layered double hydroxide microsphere templated zero-valent metal NPs for environmental remediation. Journal of Cleaner Production, 2021, 285, 124830.	4.6	44
118	Polymer Nanocomposite Membranes for Antifouling Nanofiltration. Recent Patents on Nanotechnology, 2016, 10, 189-201.	0.7	44
119	Impedimetric sensing of humidity and temperature using CeO2–Co3O4 nanoparticles in polymer hosts. Mikrochimica Acta, 2015, 182, 2019-2026.	2.5	43
120	Medicago polymorpha-mediated antibacterial silver nanoparticles in the reduction of methyl orange. Green Processing and Synthesis, 2019, 8, 118-127.	1.3	43
121	SnO2–TiO2 nanocomposites as new adsorbent for efficient removal of La(III) ions from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1964-1974.	2.7	42
122	Sensitive and fast response ethanol chemical sensor based on as-grown Gd2O3 nanostructures. Journal of Rare Earths, 2015, 33, 214-220.	2.5	42
123	Bondâ€Based 2D Quadratic Fingerprints in QSAR Studies: Virtual and <i>In vitro</i> Tyrosinase Inhibitory Activity Elucidation. Chemical Biology and Drug Design, 2010, 76, 538-545.	1.5	41
124	A computational study of the nonlinear optical properties of carbazole derivatives: theory refines experiment. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	41
125	Cerium based photocatalysts for the degradation of acridine orange in visible light. Journal of Molecular Liquids, 2017, 241, 20-26.	2.3	41
126	Carboxymethyl cellulose nanocomposite beads as super-efficient catalyst for the reduction of organic and inorganic pollutants. International Journal of Biological Macromolecules, 2021, 167, 101-116.	3.6	41

#	Article	lF	CITATIONS
127	Agar hydrogel supported metal nanoparticles catalyst for pollutants degradation in water., 0, 136, 290-298.		41
128	Bile Salts Aggregation Behavior at Various Temperatures under the Influence of Amphiphilic Drug Imipramine Hydrochloride in Aqueous Medium. Zeitschrift Fur Physikalische Chemie, 2014, 228, 747-767.	1.4	40
129	Plantâ€supported silver nanoparticles: Efficient, economically viable and easily recoverable catalyst for the reduction of organic pollutants. Applied Organometallic Chemistry, 2019, 33, e4971.	1.7	40
130	Chitosan nanocomposite fibers supported copper nanoparticles based perceptive sensor and active catalyst for nitrophenol in real water. Carbohydrate Polymers, 2019, 207, 650-662.	5.1	40
131	Preparation and characterization of PES-cobalt nanocomposite membranes with enhanced anti-fouling properties and performances. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 405-419.	2.7	39
132	Albizia chevalier based Ag nanoparticles: Anti-proliferation, bactericidal and pollutants degradation performance. Journal of Photochemistry and Photobiology B: Biology, 2018, 182, 62-70.	1.7	39
133	Amino Acid-Fabricated Glassy Carbon Electrode for Efficient Simultaneous Sensing of Zinc(II), Cadmium(II), Copper(II), and Mercury(II) Ions. ACS Omega, 2019, 4, 22057-22068.	1.6	39
134	Silver Nanoparticles Embedded in Gelatin Biopolymer Hydrogel as Catalyst for Reductive Degradation of Pollutants. Journal of Polymers and the Environment, 2020, 28, 399-410.	2.4	39
135	Core–shell cobalt oxide mesoporous silica based efficient electro-catalyst for oxygen evolution. New Journal of Chemistry, 2015, 39, 5561-5569.	1.4	38
136	Fabrication and investigation of cellulose acetate-copper oxide nano-composite based humidity sensors. Sensors and Actuators A: Physical, 2016, 246, 58-65.	2.0	38
137	Selective Iron(III) ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry. Chemistry Central Journal, 2012, 6, 158.	2.6	37
138	Metal nanoparticles supported on polyacrylamide water beads as catalyst for efficient generation of H2 from NaBH4 methanolysis. International Journal of Hydrogen Energy, 2020, 45, 1532-1540.	3.8	37
139	Effect of acrylic acid on the physical properties of UV-cured poly(urethane acrylate-co-acrylic acid) films for metal coating. Progress in Organic Coatings, 2011, 71, 110-116.	1.9	36
140	Low dimensional Ni-ZnO nanoparticles as marker of toxic lead ions for environmental remediation. Journal of Industrial and Engineering Chemistry, 2014, 20, 1071-1078.	2.9	36
141	Fabrication of non-enzymatic sensor using Co doped ZnO nanoparticles as a marker of H2O2. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 62, 21-27.	1.3	36
142	Efficient electrochemical detection and extraction of copper ions using ZnSe–CdSe/SiO2 core–shell nanomaterial. Journal of Industrial and Engineering Chemistry, 2019, 73, 118-127.	2.9	36
143	Lignocellulosic biomass supported metal nanoparticles for the catalytic reduction of organic pollutants. Environmental Science and Pollution Research, 2020, 27, 823-836.	2.7	36
144	Polymer supported metallic nanoparticles as a solid catalyst for the removal of organic pollutants. Cellulose, 2020, 27, 5907-5921.	2.4	36

#	Article	IF	Citations
145	Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. Recent Patents on Nanotechnology, 2016, 10, 231-251.	0.7	36
146	Co3O4 co-doped TiO2 nanoparticles as a selective marker of lead in aqueous solution. New Journal of Chemistry, 2013, 37, 2888.	1.4	35
147	Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Research, 2014, 7, 132-143.	5.8	35
148	Facile synthesis of doped ZnO-CdO nanoblocks as solid-phase adsorbent and efficient solar photo-catalyst applications. Journal of Industrial and Engineering Chemistry, 2014, 20, 2278-2286.	2.9	34
149	Effect of gelatin on micellization and microstructural behavior of amphiphilic amitriptyline hydrochloride drug solution: A detailed study. Journal of Chemical Thermodynamics, 2015, 89, 112-122.	1.0	34
150	A SnO2-Sb2O3 nanocomposite for selective adsorption of lead ions from water samples prior to their determination by ICP-OES. Mikrochimica Acta, 2015, 182, 579-588.	2.5	33
151	Ultraviolet-curable polyurethane acrylate nanocomposite coatings based on surface-modified calcium carbonate. Progress in Organic Coatings, 2015, 85, 22-30.	1.9	33
152	Visible light functioning photocatalyst based on Al2O3 doped Mn3O4 nanomaterial for the degradation of organic toxin. Nanoscale Research Letters, 2015, 10, 355.	3.1	33
153	Phytosynthesis of silver nanoparticles; naked eye cellulose filter paper dual mechanism sensor for mercury ions and ammonia in aqueous solution. Journal of Materials Science: Materials in Electronics, 2019, 30, 7367-7383.	1.1	33
154	Biosynthesized silver supported catalysts for disinfection of Escherichia coli and organic pollutant from drinking water. Journal of Molecular Liquids, 2019, 281, 295-306.	2.3	33
155	Cellulose Acetate Based Nanocomposites for Biomedical Applications: A Review. Current Pharmaceutical Design, 2016, 22, 3007-3019.	0.9	33
156	Sol–gel synthesis and characterization of conducting polythiophene/tin phosphate nano tetrapod composite cation-exchanger and its application as Hg(II) selective membrane electrode. Journal of Sol-Gel Science and Technology, 2013, 65, 160-169.	1.1	32
157	Fabrication of Smart Chemical Sensors Based on Transition-Doped-Semiconductor Nanostructure Materials with Âμ-Chips. PLoS ONE, 2014, 9, e85036.	1.1	32
158	Influence of redox electrolyte on the device performance of phenothiazine based dye sensitized solar cells. New Journal of Chemistry, 2018, 42, 9045-9050.	1.4	32
159	Room temperature preparation of lignocellulosic biomass supported heterostructure (Cu+Co@OPF) as highly efficient multifunctional nanocatalyst using wetness co-impregnation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 549, 184-195.	2.3	31
160	Anionic polysaccharide stabilized nickel nanoparticles-coated bacterial cellulose as a highly efficient dip-catalyst for pollutants reduction. Reactive and Functional Polymers, 2019, 145, 104395.	2.0	31
161	Nitrophenol Chemi-Sensor and Active Solar Photocatalyst Based on Spinel Hetaerolite Nanoparticles. PLoS ONE, 2014, 9, e85290.	1.1	31
162	Isolation and biochemical characterization of collagens from seaweed pipefish, Syngnathus schlegeli. Biotechnology and Bioprocess Engineering, 2009, 14, 436-442.	1.4	30

#	Article	lF	CITATIONS
163	Protective effect of Amphiroa dilatata on ROS induced oxidative damage and MMP expressions in HT1080 cells. Biotechnology and Bioprocess Engineering, 2010, 15, 191-198.	1.4	30
164	Preparation and properties of poly(urethane acrylate) (PUA) and tetrapod ZnO whisker (TZnOâ€W) composite films. Polymer International, 2013, 62, 257-265.	1.6	30
165	Photochromic and nonlinear optical properties of fulgides: A density functional theory study. Computational and Theoretical Chemistry, 2013, 1022, 82-85.	1.1	29
166	Growth of Mn3O4 on cellulose matrix: Nanohybrid as a solid phase adsorbent for trivalent chromium. Applied Surface Science, 2013, 270, 539-544.	3.1	29
167	A facile route to cage-like mesoporous silica coated ZSM-5 combined with Pt immobilization. Journal of Materials Chemistry A, 2013, 1, 7525.	5.2	29
168	Visibleâ€Lightâ€Induced Copper(I)â€Catalyzed Azideâ€Alkyne Cycloaddition Initiated by Zinc Oxide Semiconductor Nanoparticles. Asian Journal of Organic Chemistry, 2015, 4, 442-444.	1.3	29
169	Exploration of calcium doped zinc oxide nanoparticles as selective adsorbent for extraction of lead ion. Desalination and Water Treatment, 2016, 57, 19311-19320.	1.0	29
170	A highly efficient and multifunctional biomass supporting Ag, Ni, and Cu nanoparticles through wetness impregnation for environmental remediation. Green Processing and Synthesis, 2019, 8, 309-319.	1.3	29
171	Crystallographic Studies of Dehydration Phenomenon in Methyl 3-hydroxy-2-methyl-1,1,4-trioxo-1,2,3,4-tetrahydro- $1\hat{l}$ » 6-benzo[e][1,2]thiazine-3-carboxylate. Journal of Chemical Crystallography, 2013, 43, 671-676.	0.5	28
172	A microchip based fluoride sensor based on the use of CdO doped ferric oxide nanocubes. Mikrochimica Acta, 2015, 182, 487-494.	2.5	28
173	Fe 2 O 3 -Co 3 O 4 nanocomposites based humidity and temperature sensors. Journal of Molecular Liquids, 2017, 237, 266-271.	2.3	28
174	Tyrosinase-Inhibitory Long-Chain Esters from Amberboa ramosa. Chemical and Pharmaceutical Bulletin, 2005, 53, 86-89.	0.6	27
175	Self-Aggregation Phenomenon of Promazine Hydrochloride Under the Influence of Sodium Cholate/Sodium Deoxycholate in Aqueous Medium. Journal of Dispersion Science and Technology, 2016, 37, 450-463.	1.3	27
176	A template of cellulose acetate polymer-ZnAl/C layered double hydroxide composite fabricated with Ni NPs: Applications in the hydrogenation of nitrophenols and dyes degradation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 241, 118671.	2.0	27
177	Synthesis and Characterization of Blended Cellulose Acetate Membranes. Polymers, 2022, 14, 4.	2.0	27
178	A thermally and mechanically stable eco-friendly nanocomposite for chemical sensor applications. New Journal of Chemistry, 2012, 36, 2368.	1.4	26
179	Fuel cell based on novel hyper-branched polybenzimidazole membrane. Macromolecular Research, 2013, 21, 35-41.	1.0	26
180	Exploration of silver oxide nanoparticles as a pointer of lanthanum for environmental applications. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2770-2776.	2.7	26

#	Article	IF	CITATIONS
181	Development of efficient chemi-sensor and photo-catalyst based on wet-chemically prepared ZnO nanorods for environmental remediation. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2733-2741.	2.7	26
182	Controlled release of organic–inorganic nanohybrid:cefadroxil intercalated Zn–Al-layered double hydroxide. International Journal of Nanomedicine, 2018, Volume 13, 3203-3222.	3.3	26
183	Selective adsorption and determination of iron(III): Mn3O4/TiO2 composite nanosheets as marker of iron for environmental applications. Applied Surface Science, 2013, 282, 46-51.	3.1	25
184	Zirconia-based catalyst for the one-pot synthesis of coumarin through Pechmann reaction. Nanoscale Research Letters, 2016, 11, 345.	3.1	25
185	A new biosource for synthesis of activated carbon and its potential use for removal of methylene blue and eriochrome black T from aqueous solutions. Industrial Crops and Products, 2022, 179, 114676.	2.5	25
186	Leufolins A and B, Potent Butyrylcholinesterase-inhibiting Flavonoid Glucosides from Leucas urticifolia. Molecules, 2007, 12, 1447-1454.	1.7	24
187	Electronic Structure, Nonlinear Optical Properties, and Vibrational Analysis of Gemifloxacin by Density Functional Theory. Spectroscopy, 2012, 27, 185-206.	0.8	24
188	Nonlinear optical properties of DPO and DMPO: a theoretical and computational study. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	24
189	Interaction of the Amphiphilic Drug Amitriptyline Hydrochloride with Gemini and Conventional Surfactants: A Physicochemical Approach. Journal of Solution Chemistry, 2013, 42, 1532-1544.	0.6	24
190	Influence of Ionic Liquid Electrolytes on the Photovoltaic Performance of Dyeâ€Sensitized Solar Cells. Energy Technology, 2017, 5, 321-326.	1.8	24
191	Photo-degradation, thermodynamic and kinetic study of carcinogenic dyes via zinc oxide/graphene oxide nanocomposites. Journal of Materials Research and Technology, 2021, 15, 3171-3191.	2.6	24
192	Investigation of Micellar and Phase Separation Phenomenon of the Amphiphilic Drug Amitriptyline Hydrochloride with Cationic Hydrotropes. Journal of Solution Chemistry, 2013, 42, 390-411.	0.6	23
193	Redox Mechanism and Evaluation of Kinetic and Thermodynamic Parameters of 1,3â€Dioxolo[4,5â€g]pyrido[2,3â€b]quinoxaline Using Electrochemical Techniques. Electroanalysis, 2014, 26, 2292-2300.	1.5	23
194	Probing the pH dependent electrochemistry of a novel quinoxaline carboxylic acid derivative at a glassy carbon electrode. Electrochimica Acta, 2014, 147, 121-128.	2.6	23
195	Tripeptide Derivative-Modified Glassy Carbon Electrode: A Novel Electrochemical Sensor for Sensitive and Selective Detection of Cd ²⁺ Ions. ACS Omega, 2020, 5, 10123-10132.	1.6	23
196	Effect of short time ball milling on physicochemical and adsorption performance of activated carbon prepared from mangosteen peel waste. Renewable Energy, 2021, 168, 723-733.	4.3	23
197	Greenâ€Chemistryâ€Inspired Synthesis of Cyclobutaneâ€Based Holeâ€Selective Materials for Highly Efficient Perovskite Solar Cells and Modules. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
198	Preparation and properties of poly(urethane acrylate) films for ultraviolet urable coatings. Journal of Applied Polymer Science, 2010, 118, 2454-2460.	1.3	22

#	Article	IF	Citations
199	Encapsulation of organic UV ray absorbents into layered double hydroxide for photochemical properties. Materials Letters, 2011, 65, 2923-2926.	1.3	22
200	Amphiphilic antidepressant drug amitriptyline hydrochloride under the influence of ionic and nonionic hydrotropes; micellization and phase separation. Journal of Industrial and Engineering Chemistry, 2013, 19, 1774-1780.	2.9	22
201	Polybenzimidazole hybrid membranes as a selective adsorbent of mercury. Composites Part B: Engineering, 2014, 56, 392-396.	5.9	22
202	Smart methanol sensor based on silver oxide-doped zinc oxide nanoparticles deposited on microchips. Mikrochimica Acta, 2014, 181, 553-563.	2.5	22
203	Electrochemical sensor for H2O2 using a glassy carbon electrode modified with a nanocomposite consisting of graphene oxide, cobalt(III) oxide, horseradish peroxidase and nafion. Mikrochimica Acta, 2016, 183, 3043-3052.	2.5	22
204	Amperometric sensor for ascorbic acid using a gold electrode modified with ZnO@SiO ₂ nanospheres. New Journal of Chemistry, 2016, 40, 8438-8443.	1.4	22
205	Development of alginate@tin oxide–cobalt oxide nanocomposite based catalyst for the treatment of wastewater. International Journal of Biological Macromolecules, 2021, 187, 386-398.	3.6	22
206	Sodium alginate nanocomposite based efficient system for the removal of organic and inorganic pollutants from wastewater. International Journal of Biological Macromolecules, 2021, 191, 243-254.	3.6	22
207	Synthesis and characterization of novel PPC-silica hybrid with improved thermal, mechanical, and water sorption properties. Macromolecular Research, 2011, 19, 876-882.	1.0	21
208	A New Trend on Biosensor for Neurotransmitter Choline/Acetylcholine—an Overview. Applied Biochemistry and Biotechnology, 2013, 169, 1927-1939.	1.4	21
209	Prediction of the linear and nonlinear optical properties of tetrahydronaphthalone derivatives via long-range corrected hybrid functionals. Molecular Physics, 2014, 112, 3165-3172.	0.8	21
210	Cerium oxideâ€'cadmium oxide nanomaterial as efficient extractant for yttrium ions. Journal of Molecular Liquids, 2018, 269, 252-259.	2.3	21
211	Input Selection of Wavelet-Coupled Neural Network Models for Rainfall-Runoff Modelling. Water Resources Management, 2019, 33, 955-973.	1.9	21
212	A polymeric chlorine dioxide self-releasing sheet to prolong postharvest life of cherry tomatoes. Postharvest Biology and Technology, 2020, 161, 111040.	2.9	21
213	Ag–Ni and Al–Ni nanoparticles for resistive response of humidity and photocatalytic degradation of Methyl Orange dye. Materials Chemistry and Physics, 2020, 244, 122748.	2.0	21
214	Aggregation and phase separation behavior of an amphiphilic drug promazine hydrochloride under the influence of inorganic salts and ureas. Thermochimica Acta, 2013, 574, 26-37.	1.2	19
215	Evaluation of cerium doped tin oxide nanoparticles as a sensitive sensor for selective detection and extraction of cobalt. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 70, 203-209.	1.3	19
216	Al–Sr metal oxides and Al–Cd layered double hydroxides for the removal of Acridine orange dye in visible light exposure. Journal of Materials Science: Materials in Electronics, 2019, 30, 15299-15312.	1.1	19

#	Article	IF	CITATIONS
217	Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite. PLoS ONE, 2014, 9, e95287.	1.1	19
218	Photocatalytic Degradation of Textile Dye on Blended Cellulose Acetate Membranes. Polymers, 2022, 14, 636.	2.0	19
219	Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels, 2022, 8, 205.	2.1	19
220	Butyrylcholinesterase inhibitory guaianolides from Amberboa ramosa. Archives of Pharmacal Research, 2005, 28, 172-176.	2.7	18
221	Effect of nano-filler dispersion on the thermal, mechanical and water sorption properties of green environmental polymer. Chinese Journal of Polymer Science (English Edition), 2012, 30, 735-743.	2.0	18
222	Photo-thermoelectric cells based on pristine \hat{l}_{\pm} -Al2O3 co-doped CdO, CNTs and their single and bi-layer composites with silicone adhesive. Journal of the Taiwan Institute of Chemical Engineers, 2015, 52, 93-99.	2.7	18
223	Water sorption and water-resistance properties of poly(vinyl alcohol)/clay nanocomposite films: Effects of chemical structure and morphology. Polymer Composites, 2015, 36, 660-667.	2.3	18
224	Phenotypic and Genotypic Resistance of <i>Salmonella</i> Isolates from Healthy and Diseased Pigs in China During 2008–2015. Microbial Drug Resistance, 2017, 23, 651-659.	0.9	18
225	Neodymium cobalt oxide as a chemical sensor. Results in Physics, 2018, 8, 578-583.	2.0	18
226	Catalytic Application of Silver Nanoparticles in Chitosan Hydrogel Prepared by a Facile Method. Journal of Polymers and the Environment, 2020, 28, 962-972.	2.4	18
227	Biomass impregnated zero-valent Ag and Cu supported-catalyst: Evaluation in the reduction of nitrophenol and discoloration of dyes in aqueous medium. Journal of Organometallic Chemistry, 2021, 938, 121756.	0.8	18
228	Isolation of Onosmins A and B, Lipoxygenase Inhibitors from Onosma hispida. Chemical and Pharmaceutical Bulletin, 2005, 53, 907-910.	0.6	17
229	Ta ₃ N ₅ Nanowire Bundles as Visible‣ightâ€Responsive Photoanodes. Chemistry - an Asian Journal, 2013, 8, 2354-2357.	1.7	17
230	Aluminium phthalocyanine chloride thin films for temperature sensing. Chinese Physics B, 2013, 22, 118101.	0.7	17
231	Selective Divalent Cobalt Ions Detection Using Ag2O3-ZnO Nanocones by ICP-OES Method for Environmental Remediation. PLoS ONE, 2014, 9, e114084.	1.1	17
232	Applied poly(2-methoxy aniline) Sn(II)silicate carbon nanotubes composite: Synthesis, characterization, structure–property relationships and applications. Journal of Industrial and Engineering Chemistry, 2014, 20, 2301-2309.	2.9	17
233	Assessment of graphene oxide/MgAl oxide nanocomposite as a non-enzymatic sensor for electrochemical quantification of hydrogen peroxide. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 255-262.	2.7	17
234	Impedimetric humidity sensor based on the use of SnO2–Co3O4 spheres. Journal of Materials Science: Materials in Electronics, 2017, 28, 4260-4266.	1.1	17

#	Article	IF	Citations
235	Cobalt oxide nanocomposites and their electrocatalytic behavior for oxygen evolution reaction. Ceramics International, 2019, 45, 13340-13346.	2.3	17
236	Design of simple and efficient metal nanoparticles templated on ZnO-chitosan coated textile cotton towards the catalytic reduction of organic pollutants. Journal of Industrial Textiles, 2022, 51, 1703S-1728S.	1.1	17
237	Metal oxides nanomaterials for the photocatalytic mineralization of toxic water wastes under solar light illumination. Journal of Water Process Engineering, 2020, 34, 101138.	2.6	17
238	Zn/Fe nanocomposite based efficient electrochemical sensor for the simultaneous detection of metal ions. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114671.	1.3	17
239	Hydrogel: A Promising Material in Pharmaceutics. Current Pharmaceutical Design, 2020, 26, 5892-5908.	0.9	17
240	Phenolic constituents fromPerovskia atriplicifolia. Natural Product Research, 2006, 20, 347-353.	1.0	16
241	Nanohybrid Based on Antibiotic Encapsulated Layered Double Hydroxide as a Drug Delivery System. Applied Biochemistry and Biotechnology, 2015, 175, 1412-1428.	1.4	16
242	Highly efficient and recoverable Ag-Cu bimetallic catalyst supported on taro-rhizomeÂpowder applied for nitroarenes and dyes reduction. Journal of Materials Research and Technology, 2022, 18, 769-787.	2.6	16
243	Remediation of different dyes from textile effluent using activated carbon synthesized from Buxus Wallichiana. Industrial Crops and Products, 2022, 187, 115267.	2.5	16
244	Structural determination of diterpenes from Daphne genkwa by NMR spectroscopy. Magnetic Resonance in Chemistry, 2006, 44, 1063-1066.	1.1	15
245	Cadmium oxide based efficient electrocatalyst for hydrogen peroxide sensing and water oxidation. Journal of Materials Science: Materials in Electronics, 2017, 28, 1092-1100.	1.1	15
246	Lactoperoxidase immobilization on silver nanoparticles enhances its antimicrobial activity. Journal of Dairy Research, 2018, 85, 460-464.	0.7	15
247	Withanolides: Biologically Active Constituents in the Treatment of Alzheimer's Disease. Medicinal Chemistry, 2016, 12, 238-256.	0.7	15
248	Preparation of cationic latent initiators containing imidazole group and their effects on the properties of DGEBA epoxy resin. Macromolecular Research, 2011, 19, 989-997.	1.0	14
249	Mechanistic investigation of the oxidation of Cefuroxime by hexacyanoferrate(III) in alkaline conditions. Journal of Industrial and Engineering Chemistry, 2013, 19, 595-600.	2.9	14
250	Tyrosinase inhibitory effect of benzoic acid derivatives and their structure-activity relationships. Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 812-817.	2.5	13
251	Green material: ecological importance of imperative and sensitive chemi-sensor based on Ag/Ag2O3/ZnO composite nanorods. Nanoscale Research Letters, 2013, 8, 380.	3.1	13
252	Development of electrochemical sensor based on layered double hydroxide as a marker of environmental toxin. Journal of Industrial and Engineering Chemistry, 2015, 30, 234-238.	2.9	13

#	Article	IF	Citations
253	Culturomics-Based Taxonomic Diversity of Bacterial Communities in the Hot Springs of Saudi Arabia. OMICS A Journal of Integrative Biology, 2019, 23, 17-27.	1.0	13
254	Iron doped nanocomposites based efficient catalyst for hydrogen production and reduction of organic pollutant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125502.	2.3	13
255	Fabrication of WO3 based nanocomposites for the excellent photocatalytic energy production under visible light irradiation. International Journal of Hydrogen Energy, 2021, 46, 39058-39066.	3.8	13
256	Revisiting the Impact of Morphology and Oxidation State of Cu on CO ₂ Reduction Using Electrochemical Flow Cell. Journal of Physical Chemistry Letters, 2022, 13, 345-351.	2.1	13
257	Synthesis of Activated Carbon from Trachycarpus fortunei Seeds for the Removal of Cationic and Anionic Dyes. Materials, 2022, 15, 1986.	1.3	13
258	Xanthine oxidase inhibiting flavonol glycoside from Amberboa ramosa. Natural Product Research, 2006, 20, 335-339.	1.0	12
259	Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites. International Journal of Nanomedicine, 2014, 9, 5533.	3.3	12
260	Synthesis, Spectroscopic Characterization and pH Dependent Electrochemical Fate of Two Non-Ionic Surfactants. Journal of the Electrochemical Society, 2014, 161, H885-H890.	1.3	12
261	Metal nanoparticles supported chitosan coated carboxymethyl cellulose beads as a catalyst for the selective removal of 4-nitrophenol. Chemosphere, 2022, 291, 133010.	4.2	12
262	Photocatalytic degradation of the antibiotic ciprofloxacin in the aqueous solution using Mn/Co oxide photocatalyst. Journal of Materials Science: Materials in Electronics, 2022, 33, 4255-4267.	1.1	12
263	Solar Water Splitting Using Earthâ€Abundant Electrocatalysts Driven by Highâ€Efficiency Perovskite Solar Cells. ChemSusChem, 2022, 15, .	3.6	12
264	Detection and Monitoring of Toxic Chemical at Ultra Trace Level by Utilizing Doped Nanomaterial. PLoS ONE, 2014, 9, e109423.	1.1	11
265	Spectroscopic Analysis of Au-Cu Alloy Nanoparticles of Various Compositions Synthesized by a Chemical Reduction Method. Advances in Materials Science and Engineering, 2015, 2015, 1-8.	1.0	11
266	Poly(propylene carbonate)/exfoliated graphite nanocomposites: Selective adsorbent for the extraction and detection of gold(III). Bulletin of Materials Science, 2015, 38, 327-333.	0.8	11
267	Bioassay-guided isolation of novel and selective urease inhibitors from Diospyros lotus. Chinese Journal of Natural Medicines, 2017, 15, 865-870.	0.7	11
268	A multimodal impedimetric sensor for humidity and mechanical pressure using a nanosized SnO2-Mn3O4 mixed oxide. Mikrochimica Acta, 2018, 185, 24.	2.5	11
269	Super adsorption performance of carboxymethyl cellulose/copper oxide-nickel oxide nanocomposite toward the removal of organic and inorganic pollutants. Environmental Science and Pollution Research, 2021, 28, 38476-38496.	2.7	11
270	Synthesis and catalytic evaluation of silver@nickel oxide and alginate biopolymer nanocomposite hydrogel beads. Cellulose, 2021, 28, 11299-11313.	2.4	11

#	Article	IF	Citations
271	Reduction of nitrophenol isomers and degradation of azo dyes through zero-valent Ni nanoparticles anchored on cellulose acetate coated Ce/Zr composite. Journal of Water Process Engineering, 2021, 44, 102383.	2.6	11
272	Enhanced catalytic reduction/degradation of organic pollutants and antimicrobial activity with metallic nanoparticles immobilized on copolymer modified with NaY zeolite films. Journal of Molecular Liquids, 2022, 359, 119246.	2.3	11
273	Chitosan hydrogel wrapped bimetallic nanoparticles based efficient catalysts for the catalytic removal of organic pollutants and hydrogen production. Applied Organometallic Chemistry, 2022, 36,	1.7	11
274	Cellulose-lanthanum hydroxide nanocomposite as a selective marker for detection of toxic copper. Nanoscale Research Letters, 2014, 9, 466.	3.1	10
275	Cellulose acetate-iron oxide nanocomposites for trace detection of fluorene from water samples by solid-phase extraction technique. Separation Science and Technology, 2018, 53, 887-895.	1.3	10
276	Antibacterial CuO-PES-CA nancomposite membranes supported CuO nanoparticles for water permeability and reduction of organic pollutants. Journal of Materials Science: Materials in Electronics, 2019, 30, 10835-10847.	1.1	10
277	Electrical conductivity and ion-exchange kinetic studies of polythiophene Sn(VI)phosphate nano composite cation-exchanger. Arabian Journal of Chemistry, 2019, 12, 1652-1659.	2.3	10
278	Polypeptide and copper oxide nanocomposite hydrogel for toxicity elimination of wastewater. Journal of Sol-Gel Science and Technology, 2020, 96, 382-394.	1.1	10
279	Design of efficient solar photocatalytic system for hydrogen production and degradation of environmental pollutant. Journal of Materials Research and Technology, 2021, 14, 2497-2512.	2.6	10
280	Isolation and Structure Determination of Three New Sesquiterpenoids from Achillea millefolium. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2012, 67, 421-425.	0.3	9
281	Hydrothermally Preparation and Characterization of Un-doped Manganese Oxide Nanostructures: Efficient Photocatalysis and Chemical Sensing Applications. Micro and Nanosystems, 2013, 5, 22-28.	0.3	9
282	Selective extraction and determination of toxic lead based on doped metal oxide nanofiber. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51, 34-43.	2.7	9
283	Prevalence, quantification and isolation of pathogenic shiga toxin Escherichia coli O157:H7 along the production and supply chain of pork around Hubei Province of China. Microbial Pathogenesis, 2018, 115, 93-99.	1.3	9
284	Isolation, spectroscopic and density functional theory of two withanolide glycosides. Journal of Molecular Structure, 2019, 1177, 449-456.	1.8	9
285	Melia Azedarach impregnated Co and Ni zero-valent metal nanoparticles for organic pollutants degradation: validation of experiments through statistical analysis. Journal of Materials Science: Materials in Electronics, 2020, 31, 16938-16950.	1.1	9
286	Eggshell membranes coated chitosan decorated with metal nanoparticles for the catalytic reduction of organic contaminates. Carbohydrate Polymers, 2021, 259, 117681.	5.1	9
287	Synthesis of silver and aluminum doped magnetic nanoparticles: New fascinating materials with multipurpose applications. Chemical Physics Letters, 2020, 742, 137167.	1.2	9
288	A photoinitiatorâ€free photosensitive polyimide with low dielectric constant. Journal of Applied Polymer Science, 2010, 117, 2937-2945.	1.3	8

#	Article	IF	CITATIONS
289	Studies on Photocatalytic Degradation of Acridine Orange and Chloroform Sensing Using As-Grown Antimony oxide Microstructures. Materials Sciences and Applications, 2011, 02, 676-683.	0.3	8
290	Detailed Electrochemistry of the Environmental Toxin Ethylene Diamine. Journal of the Electrochemical Society, 2014, 161, H370-H374.	1.3	8
291	Phylogenetic grouping and distribution of virulence genes in Escherichia coli along the production and supply chain of pork around Hubei, China. Journal of Microbiology, Immunology and Infection, 2017, 50, 382-385.	1.5	8
292	Aerosol clustering in an urban environment of Beijing during (2005–2017). Atmospheric Environment, 2019, 213, 534-547.	1.9	8
293	A new antibacterial dibenzofuran-type phloroglucinol from <i>myrtus communis</i> linn. Natural Product Research, 2020, 34, 3199-3204.	1.0	8
294	Selective separation of tungsten from the model and industrial effluents through supported liquid membrane. Chemical Papers, 2021, 75, 553-563.	1.0	8
295	Synthesis of zero-valent Au nanoparticles on chitosan coated NiAl layered double hydroxide microspheres for the discoloration of dyes in aqueous medium. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119370.	2.0	8
296	Copper oxide doped composite nanospheres decorated graphite pencil toward efficient hydrogen evolution electrocatalysis. Journal of Molecular Liquids, 2021, 335, 116084.	2.3	8
297	Fabrication of Ethanol Chemical Sensors Based on As-Prepared Gd ₂ O ₃ Nanorods by Facile Hydrothermal Routes. Journal of Colloid Science and Biotechnology, 2013, 2, 322-327.	0.2	8
298	NiCuCoS3 chalcogenide as an efficient electrocatalyst for hydrogen and oxygen evolution. Journal of Materials Research and Technology, 2021, 15, 4826-4837.	2.6	8
299	Copper Oxide-Antimony Oxide Entrapped Alginate Hydrogel as Efficient Catalyst for Selective Reduction of 2-Nitrophenol. Polymers, 2022, 14, 458.	2.0	8
300	Sunlight assisted photocatalytic dye degradation using zinc and iron based mixed metal-oxides nanopowders. Journal of King Saud University - Science, 2022, 34, 101841.	1.6	8
301	A designed miniature sensor for the trace level detection and degradation studies of the toxic dye Rhodamine B. RSC Advances, 2022, 12, 15658-15669.	1.7	8
302	Efficient reduction of organic pollutants and H2 generation using bimetallic nanoparticles coated alginate hydrogel beads. Microporous and Mesoporous Materials, 2022, 341, 112065.	2.2	8
303	Structure determination of ramosine, a guaianolide, by NMR spectroscopy. Magnetic Resonance in Chemistry, 2004, 42, 1063-1065.	1.1	7
304	Selective detection of gold(III) ions based on codoped MnO2â€"SnO2 nanocubes prepared by solution method. Materials Research Bulletin, 2014, 51, 287-294.	2.7	7
305	A new trypsin inhibitory phthalic acid ester from Heliotropium strigosum. Medicinal Chemistry Research, 2014, 23, 2712-2714.	1.1	7
306	LDPE composite films incorporating ceramic powder emitting farâ€infrared radiation for advanced foodâ€packaging applications. Journal of Applied Polymer Science, 2016, 133, .	1.3	7

#	Article	IF	CITATIONS
307	Removal of hexavalent chromium from aqueous solutions using Ni–SiO\$\$_{2}\$\$ nanomaterials. Bulletin of Materials Science, 2019, 42, 1.	0.8	7
308	Alginate biopolymer as a reactor container for copper oxide-tin oxide: Efficient nanocatalyst for reduction of different pollutants. Chemosphere, 2022, 291, 132811.	4.2	7
309	Alginate/Banana Waste Beads Supported Metal Nanoparticles for Efficient Water Remediation. Polymers, 2021, 13, 4054.	2.0	7
310	Microwave-Assisted Green Synthesis of Pure and Mn-Doped ZnO Nanocomposites: In Vitro Antibacterial Assay and Photodegradation of Methylene Blue. Frontiers in Materials, 2022, 8, .	1.2	7
311	Understanding greater cardiomyocyte functions on aligned compared to random carbon nanofibers in PLGA. International Journal of Nanomedicine, 2014, 10, 89.	3.3	6
312	Synthesis, Characterization, and Thermal and Proton Conductivity Evaluation of 2,5-Polybenzimidazole Composite Membranes. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	6
313	Selective detection of divalent nickel ions based on wet-chemically prepared Cs-doped ZnO nanosheets. Superlattices and Microstructures, 2014, 71, 93-104.	1.4	6
314	Synthesis of metal oxide composite nanosheets and their pressure sensing properties. Journal of Semiconductors, 2015, 36, 023002.	2.0	6
315	Organ-specific antioxidant defenses and FT-IR spectroscopy of muscles inCrucian carp (Carassius) Tj ETQq1 1 0.3	784314 rg 2.1	BT /Overlock
316	Isolation, characterization and DFT studies of epoxy ring containing new withanolides from Withania coagulans Dunal. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 217, 113-121.	2.0	6
317	A Simple but Efficient Catalytic Approach for the Degradation of Pollutants in Aqueous Media through <i>Cicer arietinum </i> Supported Ni Nanoparticles. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1789-1802.	1.4	6
318	Synthesis, Characterization, and Multifunctional Applications of Cu-Fe and Ni-Fe Nanomaterials. ACS Omega, 2020, 5, 15992-16002.	1.6	6
319	Bimetallic cobalt–iron diselenide nanorod modified glassy carbon electrode: an electrochemical sensing platform for the selective detection of isoniazid. RSC Advances, 2021, 11, 12649-12657.	1.7	6
320	Cation optimization for <i>burn-in loss-free</i> perovskite solar devices. Journal of Materials Chemistry A, 2021, 9, 5374-5380.	5.2	6
321	Synthesis and Pressure Sensing Properties of Pristine Zinc Oxide Nanopowder and its Blend with Carbon Nanotubes. Current Nanoscience, 2016, 12, 586-591.	0.7	6
322	Constructing two-dimensional heterojunction through decorating covalent organic framework with MoS2 for enhanced photoelectrochemical water oxidation. Journal of Environmental Chemical Engineering, 2022, 10, 106900.	3.3	6
323	Chitosan@Carboxymethylcellulose/CuO-Co2O3 Nanoadsorbent as a Super Catalyst for the Removal of Water Pollutants. Gels, 2022, 8, 91.	2.1	6
324	Effect of anionic surfactant sodium dodecyl sulfate on the reaction of hexacyanoferrate(III) oxidation of levothyroxine in aqueous medium: a kinetic and mechanistic approach. Research on Chemical Intermediates, 2013, 39, 2379-2389.	1.3	5

#	Article	IF	Citations
325	Large-scale Synthesis of Low-dimension Un-doped Iron Oxide Nanoparticles by a Wet-Chemical Method: Efficient Photo-catalyst & Sensitive Chemi-sensor Applications. Micro and Nanosystems, 2013, 5, 3-13.	0.3	5
326	Complexation behavior of mixed monolayer/mixed micelle formation between cationic noble surfactant-nonionic conventional surfactant in the presence of biocompatible polymer. Journal of Molecular Liquids, 2014, 199, 495-500.	2.3	5
327	Micellization of Amphiphilic Drug with Pharmaceutical Excipients in Aqueous Electrolytic Solution: Composition, Interaction, and Stability of the Aggregates. Journal of Dispersion Science and Technology, 2014, 35, 1588-1598.	1.3	5
328	Detection of trivalent-iron based on low-dimensional semiconductor metal oxide nanostructures for environmental remediation by ICP-OES technique. Ceramics International, 2014, 40, 8445-8453.	2.3	5
329	Selective extraction and detection of noble metal based on ionic liquid immobilized silica gel surface using ICP-OES. Bulletin of Materials Science, 2016, 39, 1011-1019.	0.8	5
330	Draft genome sequence of a multidrug-resistant emerging pathogenic isolate of Vibrio alginolyticus from the Red Sea. New Microbes and New Infections, 2020, 38, 100804.	0.8	5
331	Photovoltaic Performance of Porphyrinâ€Based Dyeâ€Sensitized Solar Cells with Binary Ionic Liquid Electrolytes. Energy Technology, 2020, 8, 2000092.	1.8	5
332	Synthesis of biomass-supported CuNi zero-valent nanoparticles through wetness co-impregnation method for the removal of carcinogenic dyes and nitroarene. Green Processing and Synthesis, 2020, 9, 237-247.	1.3	5
333	Phenolic water toxins: redox mechanism and method of their detection in water and wastewater. RSC Advances, 2021, 11, 35783-35795.	1.7	5
334	Solid-state synthesis of CdFe2O4 binary catalyst for potential application in renewable hydrogen fuel generation. Scientific Reports, 2022, 12, 1632.	1.6	5
335	Green synthesis of manganese-doped superparamagnetic iron oxide nanoparticles for the effective removal of Pb(ii) from aqueous solutions. Green Processing and Synthesis, 2022, 11, 287-305.	1.3	5
336	Efficient fabrication, antibacterial and catalytic performance of Ag-NiO loaded bacterial cellulose paper. International Journal of Biological Macromolecules, 2022, 206, 917-926.	3.6	5
337	Molecular Engineering of Thienyl Functionalized Ullazines as Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	5
338	Metallic nanoparticles decorated chitosan hydrogel wrapped pencil graphite: Effective catalyst for reduction of water pollutants and hydrogen production. Surfaces and Interfaces, 2022, 31, 102004.	1.5	5
339	Analysis of Mixed Micellar Behavior of Promazine Hydrochloride with Surfactants in Aqueous Medium at Different Temperatures and Compositions. Zeitschrift Fur Physikalische Chemie, 2013, 227, 1671-1686.	1.4	4
340	La–Sn oxide nanocatalyst: Efficient materials for the synthesis of cyclohexanones. Journal of Molecular Liquids, 2016, 224, 359-365.	2.3	4
341	Mechanistic Investigation of Osmium(VIII) Catalyzed Oxidation of Glutamic Acid With Sodium Salt of N-Chloro 4-Methylbenzenesulfonamide in Aqueous Media: A Practical Approach. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 10-18.	0.6	4
342	Benzamide sulfonamide derivatives: potent inhibitors of carbonic anhydrase-II. Medicinal Chemistry Research, 2016, 25, 438-448.	1.1	4

#	Article	IF	CITATIONS
343	Development of PUâ€₹ZnO solidâ€phase extractor for selective detection of mercury in complex matrices. Polymer Composites, 2017, 38, 2106-2112.	2.3	4
344	Association between bacterial strain type and host biomarkers in Clostridium perfringens infected goats. Microbial Pathogenesis, 2017, 112, 254-258.	1.3	4
345	MerTK negatively regulates Staphylococcus aureus induced inflammatory response via Toll-like receptor signaling in the mammary gland. Molecular Immunology, 2020, 122, 1-12.	1.0	4
346	Modification of cellulose filter paper with bimetal nanoparticles for catalytic reduction of nitroaromatics in water. Cellulose, 2021, 28, 11067.	2.4	4
347	Structural, optical and photocatalytic properties of silver-doped magnesia: computational and experimental study. Journal of Molecular Liquids, 2021, 339, 117176.	2.3	4
348	Fabrication of Highly Sensitive Chemi-Sensor and Efficient Photocatalyst Based On ZnO Nanostructured Material. Micro and Nanosystems, 2013, 5, 38-46.	0.3	4
349	Assessing the potential biological activities of TiO ₂ and Cu, Ni and Cr doped TiO ₂ nanoparticles. RSC Advances, 2022, 12, 3856-3861.	1.7	4
350	Sensitive chemi-sensor for environmental applications as marker of chloroform in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 106, 231-235.	2.0	3
351	Study of the base-catalysed oxidation of the anti-bacterial and anti-protozoal agent metronidazole by permanganate ion in alkaline medium. Research on Chemical Intermediates, 2014, 40, 1703-1714.	1.3	3
352	Applications of Nanocomposites in Humidity Sensors and Solar Cells. Current Nanoscience, 2020, 16, 504-506.	0.7	3
353	Humidity Sensing Properties of Zinc Oxide-indigo Dye Nanocomposite. Current Nanoscience, 2016, 12, 564-568.	0.7	3
354	Hypertensive Retinopathy: A Prognostic Factor for Morbidity and Mortality after Acute ST Elevation Myocardial Infarction. Journal of the College of Physicians and SurgeonsPakistan: JCPSP, 2019, 29, 205-209.	0.2	3
355	Preparation, Characterization, and Biological Features of Cactus Coated Bacterial Cellulose Hydrogels. Gels, 2022, 8, 88.	2.1	3
356	Ni–Al-layered double-hydroxide photocatalyst for the visible light-assisted photodegradation of organic dye pollutants. Applied Nanoscience (Switzerland), 2022, 12, 3597-3606.	1.6	3
357	Electrochemical Sensing Platform for the Detection and Degradation Studies of Metanil Yellow. Journal of the Electrochemical Society, 2022, 169, 056503.	1.3	3
358	Crystal Structure of 3-Chloromethyl-(3-phenyl-oxiranyl)phenyl Methanone: New Monoclinic Polymorph. Asian Journal of Chemistry, 2014, 26, 2715-2717.	0.1	2
359	Development of Polymer Based Nanocomposites as a Marker of Cadmium in Complex Matrices. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	2

Editorial (Thematic Issue: Nanocomposites for Environmental Remediation and their Fascinating) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 6

#	Article	lF	Citations
361	Effect of porous zeolite on temperature-dependent physical properties of polypropylene/octadecane (PP/OD) composite films. EXPRESS Polymer Letters, 2018, 12, 658-674.	1.1	2
362	Crystal Structure and Electrochemical Properties of 1 -(4- bromophenyl)-ferrocene-prop-2-en-1-one and 1 -(3-(4- bromophenyl)-5-(ferrocene)-4.5-dihydropyrazol-1-yl) ethenone. International Journal of Electrochemical Science, 2019, , 8355-8370.	0.5	2
363	Electrical conductance, dielectric properties and photodegradation ability of aluminum based Heterogeneous nanoparticles. Materials Chemistry and Physics, 2020, 254, 123546.	2.0	2
364	RECENT AND FUTURE PROSPECTIVE OF VARIOUS PHOTO-CATALYSTS FOR ENVIRONMENTAL POLLUTION AND ENERGY PRODUCTION: A REVIEW. Surface Review and Letters, 2021, 28, 2130002.	0.5	2
365	Catalytic performance of the biosynthesized AgNps from Bistorta amplexicaule: antifungal, bactericidal, and reduction of carcinogenic 4-nitrophenol. Green Processing and Synthesis, 2020, 9, 259-267.	1.3	2
366	Synthesis, Characterization and Fuel Cell Application of Polyimides. Letters in Organic Chemistry, 2012, 9, 655-659.	0.2	2
367	Nanostructured Materials and their Potential as Electrochemical Sensors. Current Nanoscience, 2020, 16, 534-543.	0.7	2
368	Effect of Novel Surfactant on the Growth Kinetics of Cobalt Nanoparticles. Tenside, Surfactants, Detergents, 2017, 54, 448-452.	0.5	2
369	Aminolyses of Y-substituted Phenyl 2-Furoates and Cinnamates: Effect of Nonleaving Group Substituent on Reactivity and Mechanism. Bulletin of the Korean Chemical Society, 2007, 28, 1353-1357.	1.0	2
370	Development and Evaluation of Clostridium perfringens Type D Toxoid Vaccines. Pakistan Journal of Zoology, 2018, 50 , .	0.1	2
371	Polyethersulphone coated Ag-SiO2 nanoparticles: a multifunctional and ultrafiltration membrane with improved performance., 0, 239, 217-227.		2
372	Association Of Hypertensive Retinopathy With Angiographic Severity Of Coronary Artery Disease Determined By Syntax Score. Journal of Ayub Medical College, Abbottabad: JAMC, 2019, 31, 189-191.	0.1	2
373	Nanoarchitectured Cu based catalysts supported on alginate/glycyl leucine hybrid beads for tainted water treatment. International Journal of Biological Macromolecules, 2022, 208, 56-69.	3.6	2
374	Spasmolytic and Ca++ Channel Blocking Potential of Nepetolide: Isolated from Nepeta Suavis. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	1
375	Kinetic Behavior of Cobalt Nanoparticles Facilitated by Cationic Surfactant. Chemical Engineering Communications, 2016, 203, 446-451.	1.5	1
376	Assessment of cellulose acetate/manganese oxide thin film as adsorbent for selective extraction of flavone. Bulletin of Materials Science, 2018, 41, 1.	0.8	1
377	Introductory Chapter: Cerium Oxide - Applications and Attributes. , 2019, , .		1
378	Evaluation of PPC Based Nanocomposite for Biomedical and Food Packaging Applications. Micro and Nanosystems, 2013, 5, 55-60.	0.3	1

#	Article	IF	CITATIONS
379	CELLULOSE ACETATE/COPPER (II) OXIDE NANOCOMPOSITE FOR SELECTIVE DETECTION AND EXTRACTION OF LEAD (II) IONS. Cellulose Chemistry and Technology, 2020, 54, 591-600.	0.5	1
380	Antimicrobial Activities of Metal Containing Compounds and Hybrids. Current Pharmaceutical Design, 2020, 26, 5881-5891.	0.9	1
381	Spasmolytic and Ca++ Channel Blocking Potential of Nepetolide: Isolated from Nepeta suavis. Natural Product Communications, 2016, 11, 591-2.	0.2	1
382	Advanced Aqueous Ammonia Monitoring by Perceptive Chemi-Sensor for Environmental Safety. Micro and Nanosystems, 2013, 5, 29-34.	0.3	0
383	Modulation of Aggregation Behaviour of Amphiphlic Drug and Surfactant Mixture under the Influence of Neutral Polymer. Asian Journal of Chemistry, 2014, 26, 6023-6028.	0.1	0
384	Biopolymers and Nanomaterials for Medical and Environmental Applications. Current Pharmaceutical Design, 2019, 25, 3597-3598.	0.9	0
385	Natural Crude Dye from Cucurbita Pepo Leaves for Dying, Antimicrobial, and Antioxidant Activities. Letters in Organic Chemistry, 2021, 18, 969-976.	0.2	0
386	2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethyl 2-nitrobenzoate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o548-o548.	0.2	0
387	Emerging Materials for Environmental and Pharmaceutical Sectors. Current Pharmaceutical Design, 2020, 26, 5765-5766.	0.9	0
388	Prevalence of diabetes mellitus among obese and non-obese patients with coronary artery disease. Journal of Ayub Medical College, Abbottabad: JAMC, 2010, 22, 64-7.	0.1	0
389	Selective adsorption of iron(III) ions based on nickel(II) oxide-copper(II) oxide nanoparticles. Current Analytical Chemistry, 2022, 18, .	0.6	0
390	Development and evaluation of polyclonal antibodies based antigen capture ELISA for detection of porcine rotavirus. Animal Biotechnology, 2022, , 1-8.	0.7	0
391	High effective catalyst based on Ni doped TiO ₂ coated natural cotton fibers for catalytic reduction of organic pollutants. Journal of Natural Fibers, 0, , 1-14.	1.7	O